The distance dependence of photoinduced electron transfer in duplex DNA was determined for a family of synthetic DNA hairpins in which a stilbene dicarboxamide forms a bridge connecting two oligonucleotide arms. Investigation of the fluorescence and transient absorption spectra of these hairpins established that no photoinduced electron transfer occurs for a hairpin that has six deoxyadenosine-deoxythymidine base pairs. However, the introduction of a single deoxyguanosine-deoxycytidine base pair resulted in distance-dependent fluorescence quenching and the formation of the stilbene anion radical. Kinetic analysis suggests that duplex DNA is somewhat more effective than proteins as a medium for electron transfer but that it does not function as a molecular wire.
A series of intramolecular triads with linear, rod-like structures has been developed that undergo very efficient two-step electron transfer following direct excitation of a chromophore possessing a charge transfer (CT) excited state. The CT state of 4-aminonaphthalene-1,8-imide (ANI), produced by direct excitation of the chromophore, has about 70% of a negative charge transferred from the amine to the imide. Attachment of aniline (An) and p-methoxyaniline (MeOAn) donors to ANI by means of a piperazine bridge results in linear dyads, An-ANI and MeOAn- ANI, that undergo rapid electron transfer in about 10-11 s to give a >99% yield of the ion pairs, An + -ANI - and MeOAn + -ANI - , in which the charges are separated by 7.7 Å. The formation and decay of these ion pairs can be monitored directly by transient absorption spectroscopy. Further attachment of a 1,8:4,5-naphthalenediimide (NI) electron acceptor to the imide group of ANI using a 2,5-dimethylphenyl spacer results in triads An-ANI- NI and MeOAn-ANI-NI. Excitation of the CT state of ANI within these triads results in the same high yield charge separation step observed in the corresponding dyads followed by a subnanosecond charge shift reaction to yield the giant dipole states An + -ANI-NI - and MeOAn + -ANI-NI - in 72% and 92% yield, respectively, in toluene. The lifetime of MeOAn + -ANI-NI - is 310 ns. These triad molecules make explicit use of a CT excited state to initiate a multistep electron transfer process. The excited singlet CT state and the two ion pair states are all spectroscopically distinct, and all states are unambiguously spectrally resolved by transient absorption measurements. In addition, the ion pair states An + -ANI - and MeOAn + -ANI - undergo radiative recombination, thereby allowing a more detailed analysis of the energetics of charge separation and the influence of the CT excited state on the rates of subsequent longer distance charge shift reactions in these molecules.
The dynamics of photoinduced charge separation and charge recombination in synthetic DNA hairpins have been investigated by means of femtosecond and nanosecond transient spectroscopy. The hairpins consist of a stilbene linker connecting two complementary 6-mer or 7-mer oligonucleotide strands. Base pairing between these strands results in formation of hairpins in which the stilbene is approximately parallel to the adjacent base pair. The singlet stilbene is selectively quenched by guanine, but not by the other nucleobases, via an electron-transfer mechanism in which the stilbene singlet state is the electron acceptor and guanine is the electron donor. In a hairpin containing only A:T base pairs, no quenching occurs and the restricted geometry results in a long stilbene lifetime and high fluorescence quantum yield. In families of hairpins which contain a single G:C base pair at varying locations in the hairpin stem, the stilbene fluorescence lifetime and quantum yield decrease as the stilbene-guanine distance decreases. Transient absorption spectroscopy is used to monitor the disappearance of the stilbene singlet and the formation and decay of the stilbene anion radical. Analysis of these data provides the rate constants for charge separation and charge recombination. Both processes show an exponential decrease in rate constant with increasing stilbene-guanine distance. Thus, electron transfer is concluded to occur via a single-step superexchange mechanism with a distance dependence β ) 0.7 Å -1 for charge separation and 0.9 Å -1 for charge recombination. The rate constants for charge separation and charge recombination via polyA vs polyT strands are remarkably similar, slightly larger values being observed for polyA strands. The dynamics of electron transfer in hairpins containing two adjacent G:C base pairs have also been investigated. When the guanines are in different strands, the second guanine has little effect on the efficiency or dynamics of electron transfer. However, when the guanines are in the same strand, somewhat faster charge separation and slower charge recombination are observed than in the case of hairpins with a single G:C base pair. Thus, the GG step functions as a shallow hole trap. The relationship of these results to other theoretical and experimental studies of electron transfer in DNA is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.