Shell-isolated gold nanoparticles (SHINs) were employed to record shell-isolated nanoparticle-enhanced Raman spectra (SHINERS) of a passive layer formed at a gold surface during gold leaching from thiosulfate solutions. The (3-aminopropyl)triethoxysilane (APTES) and a sodium silicate solution were used to coat gold nanoparticles with a protective silica layer. This protective silica layer prevented interactions between the thiosulfate electrolyte and the gold core of the SHINs when the SHINs-modified gold electrode was immersed into the thiosulfate lixiviant. The SHINERS spectra of the passive layer, formed from thiosulfate decomposition, contained bands indicative of hydrolyzed APTES. We have demonstrated how to exploit the presence of these APTES bands as an internal standard to compensate for fluctuations of the surface enhancement of the electric field of the photon. We have also developed a procedure that allows for removal of the interfering APTES bands from the SHINERS spectra. These methodological advancements have enabled us to identify the species forming the passive layer and to determine that the formation of elemental sulfur, cyclo-S8, and polymeric sulfur chains is responsible for inhibition of gold dissolution in oxygen rich thiosulfate solutions.
Eleven bilayer molecular junctions (MJs) consisting of two different 5–7 nm thick molecular layers between conducting contacts are investigated to determine how orbital energies and optical absorbance spectra of the oligomers affect the photocurrent (PC) response, the direction of photoinduced charge transport, and maximum response wavelength. Photometric sensitivity of 2 mA W−1 and a detection limit of 11 pW are demonstrated for MJs, yielding an internal quantum efficiency of 0.14 electrons per absorbed photon. For unbiased MJs, the PC tracks the absorption spectrum of the molecular layer, and is stable for >5 h of illumination. The organic/organic (O/O) interface between the molecular layers within bilayer MJs is the primary determinant of PC polarity, and the bilayer MJ mechanism is conceptually similar to that of a single O/O heterojunction studied in bilayers of much greater thickness. The charge transport direction of the 11 MJs is completely consistent with hole‐dominated transport of photogenerated carriers. For MJs illuminated while an external bias is applied, the PC greatly exceeds the dark current by factors of 102 to 105, depending on bias, bilayer structure, and wavelength. The bilayer MJs are amenable to flexible substrates, and may have applications as sensitive, wavelength‐specific photodetectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.