Rare disease drug development is wrought with challenges not the least of which is access to the limited data currently available throughout the rare disease ecosystem where sharing of the available data is not guaranteed. Most pharmaceutical sponsors seeking to develop agents to treat rare diseases will initiate data landscaping efforts to identify various data sources that might be informative with respect to disease prevalence, patient selection and identification, disease progression and any data projecting likelihood of patient response to therapy including any genetic data. Such data are often difficult to come by for highly prevalent, mainstream disease populations let alone for the 8000 rare disease that make up the pooled patient population of rare disease patients. The future of rare disease drug development will hopefully rely on increased data sharing and collaboration among the entire rare disease ecosystem. One path to achieving this outcome has been the development of the rare disease cures accelerator, data analytics platform (RDCA-DAP) funded by the US FDA and operationalized by the Critical Path Institute. FDA intentions were clearly focused on improving the quality of rare disease regulatory applications by sponsors seeking to develop treatment options for various rare disease populations. As this initiative moves into its second year of operations it is envisioned that the increased connectivity to new and diverse data streams and tools will result in solutions that benefit the entire rare disease ecosystem and that the platform becomes a Collaboratory for engagement of this ecosystem that also includes patients and caregivers.
Rare disease drug development is wrought with challenges not the least of which is access to the limited data currently available throughout the rare disease ecosystem where sharing of the available data is not guaranteed. Most pharmaceutical sponsors seeking to develop agents to treat rare diseases will initiate data landscaping efforts to identify various data sources that might be informative with respect to disease prevalence, patient selection and identification, disease progression and any data projecting likelihood of patient response to therapy including any genetic data. Such data are often difficult to come by for highly prevalent, mainstream disease populations let alone for the 8000 rare disease that make up the pooled patient population of rare disease patients. The future of rare disease drug development will hopefully rely on increased data sharing and collaboration among the entire rare disease ecosystem. One path to achieving this outcome has been the development of the rare disease cures accelerator, data analytics platform (RDCA-DAP) funded by the US FDA and operationalized by the Critical Path Institute. FDA intentions were clearly focused on improving the quality of rare disease regulatory applications by sponsors seeking to develop treatment options for various rare disease populations. As this initiative moves into its second year of operations it is envisioned that the increased connectivity to new and diverse data streams and tools will result in solutions that benefit the entire rare disease ecosystem and that the platform becomes a Collaboratory for engagement of this ecosystem that also includes patients and caregivers.
Early-stage drug discovery is highly dependent upon drug target evaluation, understanding of disease progression and identification of patient characteristics linked to disease progression overlaid upon chemical libraries of potential drug candidates. Artificial intelligence (AI) has become a credible approach towards dealing with the diversity and volume of data in the modern drug development phase. There are a growing number of services and solutions available to pharmaceutical sponsors though most prefer to constrain their own data to closed solutions given the intellectual property considerations. Newer platforms offer an alternative, outsourced solution leveraging sponsors data with other, external open-source data to anchor predictions (often proprietary algorithms) which are refined given data indexed upon the sponsor’s own chemical libraries. Digital research environments (DREs) provide a mechanism to ingest, curate, integrate and otherwise manage the diverse data types relevant for drug discovery activities and also provide workspace services from which target sharing and collaboration can occur providing yet another alternative with sponsors being in control of the platform, data and predictive algorithms. Regulatory engagement will be essential in the operationalizing of the various solutions and alternatives; current treatment of drug discovery data may not be adequate with respect to both quality and useability in the future. More sophisticated AI/ML algorithms are likely based on current performance metrics and diverse data types (e.g., imaging and genomic data) will certainly be a more consistent part of the myriad of data types that fuel future AI-based algorithms. This favors a dynamic DRE-enabled environment to support drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.