Peroxisome proliferator-activated receptors (PPARs) ␣ and ␥ are key regulators of lipid homeostasis and are activated by a structurally diverse group of compounds including fatty acids, eicosanoids, and hypolipidemic drugs such as fibrates and thiazolidinediones. While thiazolidinediones and 15-deoxy-⌬ 12,14 -prostaglandin J 2 have been shown to bind to PPAR␥, it has remained unclear whether other activators mediate their effects through direct interactions with the PPARs or via indirect mechanisms. Here, we describe a novel fibrate, designated GW2331, that is a highaffinity ligand for both PPAR␣ and PPAR␥. Using GW2331 as a radioligand in competition binding assays, we show that certain mono-and polyunsaturated fatty acids bind directly to PPAR␣ and PPAR␥ at physiological concentrations, and that the eicosanoids 8(S)-hydroxyeicosatetraenoic acid and 15-deoxy-⌬ 12,14 -prostaglandin J 2 can function as subtypeselective ligands for PPAR␣ and PPAR␥, respectively. These data provide evidence that PPARs serve as physiological sensors of lipid levels and suggest a molecular mechanism whereby dietary fatty acids can modulate lipid homeostasis.
Accumulation of cholesterol causes both repression of genes controlling cholesterol biosynthesis and cellular uptake and induction of cholesterol 7␣-hydroxylase, which leads to the removal of cholesterol by increased metabolism to bile acids. Here, we report that LXR␣ and LXR, two orphan members of the nuclear receptor superfamily, are activated by 24(S),25-epoxycholesterol and 24(S)-hydroxycholesterol at physiologic concentrations. In addition, we have identified an LXR response element in the promoter region of the rat cholesterol 7␣-hydroxylase gene. Our data provide evidence for a new hormonal signaling pathway that activates transcription in response to oxysterols and suggest that LXRs play a critical role in the regulation of cholesterol homeostasis.Cholesterol (CH) 1 is a major structural constituent of cellular membranes and serves as the biosynthetic precursor for bile acids and steroid hormones. Animal cells can obtain CH endogenously through de novo synthesis from acetyl-CoA or exogenously through receptor-mediated endocytosis of low density lipoproteins. Cells must balance the internal and external sources of CH so as to maintain mevalonate biosynthesis while at the same time avoiding the accumulation of excess CH, which can result in diseases such as atherosclerosis, gallstones, and several lipid storage disorders (1).CH homeostasis is maintained in part through feedback regulation of the low density lipoprotein receptor gene and at least two genes encoding enzymes in the CH biosynthetic pathway, 3-hydroxy-3-methylglutaryl coenzyme A synthase and 3-hydroxy-3-methylglutaryl coenzyme A reductase (1). Although increases in dietary CH lead to the inhibition of expression of these genes in vivo, it remains unclear whether CH or CH metabolites are responsible for this inhibition (2). Experiments performed in vitro using several different cell lines have indicated that derivatives of CH that are oxygenated on the CH side chain are significantly more potent in the suppression of sterol biosynthesis than CH (3). These oxysterols are produced through the actions of P450 enzymes in various metabolic pathways including bile acid synthesis in the liver and sex hormone synthesis in the adrenal glands. The in vitro activities of oxysterols together with their presence in vivo suggests that oxysterols may serve in metabolic feedback loops to regulate CH homeostasis.Although CH and its oxysterol metabolites can repress gene transcription, in at least one instance dietary CH has been shown to stimulate gene expression. Expression of the cholesterol 7␣-hydroxylase (CYP7A) gene, which encodes the enzyme responsible for the initial and rate-limiting step in the conversion of CH to bile acids (4), is up-regulated in rats fed a CH-rich diet (5-7). This stimulatory effect provides a regulatory mechanism whereby excess dietary CH can be converted to more polar bile acids for subsequent removal from the body. Although the molecular mechanism is unknown, induction of CYP7A expression in the presence of CH occurs at the level...
The ɛ4 allele of the apolipoprotein E (APOE) gene is currently the strongest and most highly replicated genetic factor for risk and age of onset of late-onset Alzheimer's disease (LOAD). Using phylogenetic analysis, we have identified a polymorphic poly-T variant, rs10524523, in the translocase of outer mitochondrial membrane 40 homolog (TOMM40) gene that provides greatly increased precision in the estimation of age of LOAD onset for APOE ɛ3 carriers. In two independent clinical cohorts, longer lengths of rs10524523 are associated with a higher risk for LOAD. For APOE ɛ3/4 patients who developed LOAD after 60 years of age, individuals with long poly-T repeats linked to APOE ɛ3 develop LOAD on an average of 7 years earlier than individuals with shorter poly-T repeats linked to APOE ɛ3 (70.5±1.2 years versus 77.6±2.1 years, P=0.02, n=34). Independent mutation events at rs10524523 that occurred during Caucasian evolution have given rise to multiple categories of poly-T length variants at this locus. On replication, these results will have clinical utility for predictive risk estimates for LOAD and for enabling clinical disease prevention studies. In addition, these results show the effective use of a phylogenetic approach for analysis of haplotypes of polymorphisms, including structural polymorphisms, which contribute to complex diseases.
A family history of coronary artery disease (CAD), especially when the disease occurs at a young age, is a potent risk factor for CAD. DNA collection in families in which two or more siblings are affected at an early age allows identification of genetic factors for CAD by linkage analysis. We performed a genomewide scan in 1,168 individuals from 438 families, including 493 affected sibling pairs with documented onset of CAD before 51 years of age in men and before 56 years of age in women. We prospectively defined three phenotypic subsets of families: (1) acute coronary syndrome in two or more siblings; (2) absence of type 2 diabetes in all affected siblings; and (3) atherogenic dyslipidemia in any one sibling. Genotypes were analyzed for 395 microsatellite markers. Regions were defined as providing evidence for linkage if they provided parametric two-point LOD scores >1.5, together with nonparametric multipoint LOD scores >1.0. Regions on chromosomes 3q13 (multipoint LOD = 3.3; empirical P value <.001) and 5q31 (multipoint LOD = 1.4; empirical P value <.081) met these criteria in the entire data set, and regions on chromosomes 1q25, 3q13, 7p14, and 19p13 met these criteria in one or more of the subsets. Two regions, 3q13 and 1q25, met the criteria for genomewide significance. We have identified a region on chromosome 3q13 that is linked to early-onset CAD, as well as additional regions of interest that will require further analysis. These data provide initial areas of the human genome where further investigation may reveal susceptibility genes for early-onset CAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.