We present a human-centric paradigm for scene understanding. Our approach goes beyond estimating 3D scene geometry and predicts the "workspace" of a human which is represented by a data-driven vocabulary of human interactions. Our method builds upon the recent work in indoor scene understanding and the availability of motion capture data to create a joint space of human poses and scene geometry by modeling the physical interactions between the two. This joint space can then be used to predict potential human poses and joint locations from a single image. In a way, this work revisits the principle of Gibsonian affordances, reinterpreting it for the modern, data-driven era.
In this paper, we propose a data-driven approach to leverage repositories of 3D models for scene understanding. Our ability to relate what we see in an image to a large collection of 3D models allows us to transfer information from these models, creating a rich understanding of the scene. We develop a framework for auto-calibrating a camera, rendering 3D models from the viewpoint an image was taken, and computing a similarity measure between each 3D model and an input image. We demonstrate this data-driven approach in the context of geometry estimation and show the ability to find the identities and poses of object in a scene. Additionally, we present a new dataset with annotated scene geometry. This data allows us to measure the performance of our algorithm in 3D, rather than in the image plane. : From a single image, we estimate detailed scene geometry and object labels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.