This paper describes a recent determination of the von Klitzing constant and the fine-structure constant by comparisons of values of the ohm as defined in the International System of Units (SI), derived from the National Institute of Standards and Technology (NIST) calculable cross-capacitor, and values of the international practical unit of resistance derived from the integral quantum Hall effect. In this determination, the comparisons were made in a series of measurements lasting three years. A small difference is observed between this determination and an earlier comparison carried out in this laboratory and reported in 1988. The most recent value of the fine-structure constant based on the experimental value and theoretical expression for the magnetic moment anomaly of the electron, which has the smallest uncertainty of any value currently available, is consistent with both of these results. The new value exceeds the 1990 conventional value of the von Klitzing constant by slightly more than twice the relative standard uncertainty of the present measurement, which is 2.4 10 -8 .
We demonstrate that dc quantized Hall resistance (dc QHR) guideline properties and dc and ac QHR values can be measured without changing sample probe lead connections at the QHR device, and report ac QHR values that converge to the dc QHR value when using four-terminal-pair ac QHR measurements. This was accomplished during one cooldown using single-series and quadruple-series connections outside the sample probe. The QHR was measured from 0 Hz to 5500 Hz in 1:1 ratio at 20 µA to ±1 part in 107 uncertainties with a poor-quality QHR device. A good device would allow an order of magnitude smaller uncertainties over this frequency range. We exchanged positions of the QHR device and reference resistor in the bridge and remeasured the resistance ratios to remove dominant ac bridge effects.
At the National Institute of Standards and Technology (NIST), the U.S. representation of the ohm is based on the quantum Hall effect, and it is maintained and disseminated at various resistance levels by working reference groups of standards. This document describes the measurement systems and procedures used to calibrate standard resistors and current shunts of nominal decade values in the resistance range from 10 −5 Ω to 10 12 Ω. Resistance scaling techniques used to assign values to the working standards are discussed. Also included is an assessment of the calibration uncertainties at each resistance level. * The abbreviation ppm (parts-per-million) is used in place of an equivalent SI ratio such as µΩ/Ω or µV/V when it does not appear in combination with SI terms.* Evanohm is a commercial alloy having a resistivity of about 1.34 µΩ-m with a nominal composition of 75 % Ni, 20 % Cr, 2.5 % Cu, and 2.5 % Al. By suitable annealing and heat treatment, its TCR can be adjusted to nearly zero from (20 to 30) °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.