This report details a palladium-catalyzed process to access highly functionalized optically active allylic aryl ethers. A number of electron-deficient alkenyl triflates underwent enantio- and site-selective coupling with acyclic aryl enol ethers in the presence of a chiral palladium catalyst. This transform provides chiral allylic ether products in high yields and excellent enantiomeric ratios furnishing a unique disconnection to incorporate heteroatoms at a stereocenter. Finally, the applicability of the products to target synthesis was demonstrated through the formation of a chiral allylic alcohol and the generation of a flavone-inspired product.
In this study, we describe a real-time live cell assay for compound accumulation and permeability in both Gram positive and Gram negative bacteria. The assay utilizes a novel fluorogenic tagging strategy that permits direct visualization of compound accumulation dynamics in the cytoplasm of live cells, unobscured by washing or other processing steps. Quantitative differences could be reproducibly measured by flow cytometry at compound concentrations below the limit of detection for MS-based approaches. We establish the fluorogenic assay in E. coli and B. subtilis and compare the intracellular accumulation of two antibiotics, ciprofloxacin and ampicillin, with related pharmacophores in these model Gram negative and Gram positive bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.