C-1027 is a potent antitumor agent with a previously undescribed molecular architecture and mode of action. Cloning and characterization of the 85-kilobase C-1027 biosynthesis gene cluster from Streptomyces globisporus revealed (i) an iterative type I polyketide synthase that is distinct from any bacterial polyketide synthases known to date, (ii) a general polyketide pathway for the biosynthesis of both the 9- and 10-membered enediyne antibiotics, and (iii) a convergent biosynthetic strategy for the C-1027 chromophore from four building blocks. Manipulation of genes governing C-1027 biosynthesis allowed us to produce an enediyne compound in a predicted manner.
Gentamicin is a 4,6-disubstituted aminocyclitol antibiotic complex synthesised by some members of the actinomycete genus Micromonospora. In a search for the gentamicin biosynthetic gene cluster we identified, using a cosmid library approach, a region of the M. echinospora ATCC15835 chromosome that encodes homologues of aminoglycoside biosynthesis genes including gntB-a close homologue of the 2-deoxy-scyllo-inosose synthase gene (btrC) from butirosin-producing Bacillus circulans. Insertional inactivation was achieved by homologous recombination with an internal gntB fragment-containing suicide plasmid, delivered by conjugal transfer from Escherichia coli. gntB disruptants were gentamicin nonproducing mutants as assayed by an ELISA antibiotic detection system, proving the association of gntB (or a downstream region) with gentamicin biosynthesis. The function of some open reading frames within the cluster, predicted by nucleotide database homology searching, is discussed with regards to their potential roles in gentamicin biosynthesis. The discovery of this genetic region represents the first report of a gene cluster involved in the biosynthesis of a 4,6-disubstituted aminocyclitol antibiotic.
telephone: (608) 263-2673, and fax: (608) 262-5345The archetypical polyketide synthases (PKSs), known as type I, II, and III PKSs, have accounted for the vast structural diversities embodied by polyketide natural products, but recent progress in polyketide biosynthesis clearly suggests much greater diversity for PKS mechanism and structure. We have previously argued the emergence of novel PKSs and cautioned the oversimplification of polyketide biosynthesis according to the type I, II, and III PKS paradigms on the basis of our studies on the biosynthesis of the enediynes, the macrotetrolides, and leinamycin. We present here a brief progress report on our current effort to mechanistically characterize these novel PKSs.
154
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.