Fiber orientation in oscillatory shearing flow was studied both experimentally and numerically. Optical measurements were made using a custom flow cell containing rigid, noncolloidal fibers suspended at high concentration in a Newtonian fluid. Simulations that account for hydrodynamic drag and excluded volume predict fiber alignment in the vorticity direction for some conditions, in agreement with the measurements. Vorticity alignment was found to be a complex function of strain amplitude and fiber concentration, confinement, and aspect ratio.
Inherent challenges regarding the rheological characterization of slurries of elongated particles have necessitated the development of alternatives to standardized rheometers. These methods of measurement, and the associated advances in the quantification of shear and normal stress measurements, are described. Also, recent advances in modeling and predictive capabilities are summarized. During shearing flows, confinement substantially influences the orientation distribution of the particles; this change in the microstructure impacts the rheology, even as the smallest confining dimension exceeds seven particle lengths. The slow development of the orientation distributions renders additional difficulties in evaluating the rheology. Achievements of the measurement methods include a universal shear viscosity as a function of concentration for a wide range of particle lengths to diameters (aspect ratios). The jamming limit (divergence of the viscosity with concentration) of the suspensions has been also shown to scale differently than for spheres. More general dynamics of the suspensions and the additional needs for measurement improvements are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.