The plasma membrane protects the cell from its surroundings and regulates cellular communication, homing, and metabolism. Not surprisingly, the composition of this membrane is highly controlled through the vesicular trafficking of proteins to and from the cell surface. As intracellular pathogens, most viruses exploit the host plasma membrane to promote viral replication while avoiding immune detection. This is particularly true for the enveloped human immunodeficiency virus (HIV), which assembles and obtains its lipid shell directly at the plasma membrane. HIV-1 encodes two proteins, negative factor (Nef) and viral protein U (Vpu), which function primarily by altering the quantity and localization of cell surface molecules to increase virus fitness despite host antiviral immune responses. These proteins are expressed at different stages in the HIV-1 life cycle and employ a variety of mechanisms to target both unique and redundant surface proteins, including the viral receptor CD4, host restriction factors, immunoreceptors, homing molecules, tetraspanins and membrane transporters. In this review, we discuss recent progress in the study of the Nef and Vpu targeting of host membrane proteins with an emphasis on how remodeling of the cell membrane allows HIV-1 to avoid host antiviral immune responses leading to the establishment of systemic and persistent infection.
Interleukin (IL)-7 is an essential nonredundant cytokine, and throughout the lifespan of a T-cell signaling via the IL-7 receptor influences cell survival, proliferation and differentiation. It is therefore no surprise that expression of the IL-7 receptor alpha-chain (CD127) is tightly regulated. We have previously shown that IL-7 downregulates expression of CD127 at the cell surface and now elucidate the kinetics of that suppression and demonstrate that IL-7 downregulates CD127 transcripts and surface protein in primary human CD8 T cells by two separate pathways. We show that IL-7 induces the initial reduction in cellsurface CD127 protein independent of transcriptional suppression, which is delayed by 40-60 min. Although IL-7-mediated downregulation of CD127 transcripts is dependent on Janus kinase (JAK)/STAT5, the early downregulation of surface CD127 protein is independent of JAK activity. The data further illustrate that low levels of IL-7 induce smaller and transient decreases in CD127 transcripts and surface protein, whereas higher concentrations induce more profound and sustained suppression. Such flexibility in receptor expression likely allows for fine-tuned immune responses in human CD8 T cells in different microenvironments and in response to different immunological challenges.
IL-7 signaling is essential to CD8 T cell development, activation, and homeostasis. We have previously shown decreased expression of the IL-7R α-chain (CD127) on CD8 T cells in HIV+ patients and that this downregulation is mediated at least in part by the HIV Tat protein. We show in this study that CD127 has a prolonged t1/2 in resting CD8 T cells and continuously recycles on and off the cell membrane. We also demonstrate soluble Tat protein significantly decreases the t1/2 of CD127. Soluble Tat is taken up from the medium and accumulates in CD8 T cells with a peak of 6 h. Once inside the cell, Tat exits the endosomes during their normal acidification and enters the cytosol. Tat then translocates to the inner leaflet of the cell membrane, where it binds directly to the cytoplasmic tail of CD127, inducing receptor aggregation and internalization through a process dependent on microtubules. Tat appears to then target CD127 for degradation via the proteasome. By removing CD127 from the cell surface, the HIV Tat protein is thus able to reduce IL-7 signaling and impair CD8 T cell proliferation and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.