Cobalt and nickel oxide cluster cations, Co(x)O(y)(+) and Ni(x)O(y)(+), are produced by laser vaporization of metal rods in a pulsed nozzle cluster source and detected using time-of-flight mass spectrometry. The mass spectra show prominent stoichiometries of x = y for Co(x)O(y)(+) along with x = y and x = y - 1 for Ni(x)O(y)(+). The cluster cations are mass selected and multiphoton photodissociated using the third harmonic (355 nm) of a Nd:YAG laser. Although various channels are observed, photofragmentation exhibits two main forms of dissociation processes in each system. Co(x)O(y)(+) dissociates preferentially through the loss of O(2) and the formation of cobalt oxide clusters with a 1:1 stoichiometry. The Co(4)O(4)(+) cluster seems to be particularly stable. Ni(x)O(y)(+) fragments reveal a similar loss of O(2), although they are found to favor metal-rich fragments with stoichiometries of Ni(x)O(x-1). The Ni(2)O(+) fragment is produced from many parent ions. The patterns in fragmentation here are not nearly as strong as those seen for early or mid-period transition-metal oxides studied previously.
Cobalt-benzene cluster ions of the form Co(bz) (n = 0-3) were produced in the gas phase, mass-selected, and cooled in a cryogenic ion trap held at 3-4 K. To explore ligand effects on cluster magnetic moments, these species were investigated with X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) spectroscopy. XMCD spectra yield both the spin and orbital angular momenta of these clusters. Co has a spin magnetic moment of μ = 6 μ and an orbital magnetic moment of μ = 3 μ. Co(bz) and Co(bz) complexes were found to have spin and orbital magnetic moments identical to the values for ligand-free Co. However, coordination of the third benzene to form Co(bz) completely quenches the high spin state of the system. Density functional theory calculations elucidate the spin states of the Co(bz) species as a function of the number of attached benzene ligands, explaining the transition from septet to singlet for n = 0 → 3.
Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)).
The synthesis and structural characterization of the hitherto unknown parent Co(bz) (bz=benzene) complex and several of its derivatives are described. Their synthesis starts either from a CoCO salt, or directly from Co (CO) and a Ag salt. Stability and solubility of these complexes was achieved by using the weakly coordinating anions (WCAs) [Al(OR ) ] and [F{Al(OR ) } ] {R =C(CF ) } and the solvent ortho-difluorobenzene (o-DFB). The magnetic properties of Co(bz) were measured and compared in the condensed and gas phases. The weakly bound Co(o-dfb) salts are of particular interest for the preparation of further Co salts, for example, the structurally characterized low-coordinate 12 valence electron Co(P Bu ) and Co(NHC) salts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.