We use a combination of three large N‐body simulations to investigate the dependence of dark matter halo concentrations on halo mass and redshift in the Wilkinson Microwave Anisotropy Probe year 5 (WMAP5) cosmology. The median relation between concentration and mass is adequately described by a power law for halo masses in the range 1011–1015 h−1 M⊙ and redshifts z < 2, regardless of whether the halo density profiles are fitted using Navarro, Frenk & White or Einasto profiles. Compared with recent analyses of the Millennium Simulation, which uses a value of σ8 that is higher than allowed by WMAP5, z= 0 halo concentrations are reduced by factors ranging from 23 per cent at 1011 h−1 M⊙ to 16 per cent at 1014 h−1 M⊙. The predicted concentrations are much lower than inferred from X‐ray observations of groups and clusters.
The radial entropy profile of the hot gas in clusters of galaxies tends to follow a power law in radius outside of the cluster core. Here we present a simple formula giving both the normalization and slope for the power‐law entropy profiles of clusters that form in the absence of non‐gravitational processes such as radiative cooling and subsequent feedback. It is based on 71 clusters drawn from four separate cosmological simulations, two using smoothed particle hydrodynamics and two using adaptive‐mesh refinement (AMR), and can be used as a baseline for assessing the impact of non‐gravitational processes on the intracluster medium outside of cluster cores. All the simulations produce clusters with self‐similar structure in which the normalization of the entropy profile scales linearly with cluster temperature, and these profiles are in excellent agreement outside of 0.2r200. Because the observed entropy profiles of clusters do not scale linearly with temperature, our models confirm that non‐gravitational processes are necessary to break the self‐similarity seen in the simulations. However, the core entropy levels found by the two codes used here significantly differ, with the AMR code producing nearly twice as much entropy at the centre of a cluster.
We describe updates to the redMaPPer algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys. The updated algorithm is applied to 150 deg 2 of Science Verification (SV) data from the Dark Energy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set. The DES SV catalog is locally volume limited, and contains 786 clusters with richness λ > 20 (roughly equivalent to M 500c 10 14 h −1 70 M ) and 0.2 < z < 0.9. The DR8 catalog consists of 26311 clusters with 0.08 < z < 0.6, with a sharply increasing richness threshold as a function of redshift for z 0.35. The photometric redshift performance of both catalogs is shown to be excellent, with photometric redshift uncertainties controlled at the σ z /(1 + z) ∼ 0.01 level for z 0.7, rising to ∼ 0.02 at z ∼ 0.9 in DES SV. We make use of Chandra and XMM X-ray and South Pole Telescope Sunyaev-Zeldovich data to show that the centering performance and massrichness scatter are consistent with expectations based on prior runs of redMaPPer on SDSS data. We also show how the redMaPPer photo-z and richness estimates are relatively insensitive to imperfect star/galaxy separation and small-scale star masks.
We introduce the Hydrangea simulations, a suite of 24 cosmological hydrodynamic zoom-in simulations of massive galaxy clusters (M 200c = 10 14 -10 15.4 M ) with baryon particle masses of ∼10 6 M . Designed to study the impact of the cluster environment on galaxy formation, they are a key part of the 'Cluster-EAGLE' project (Barnes et al., in prep.). They use a galaxy formation model developed for the EAGLE project, which has been shown to yield both realistic field galaxies and hot gas fractions of galaxy groups consistent with observations. The total stellar mass content of the simulated clusters agrees with observations, but central cluster galaxies are too massive, by up to 0.6 dex. Passive satellite fractions are higher than in the field, and at stellar masses M star > 10 10 M this environmental effect is quantitatively consistent with observations. The predicted satellite stellar mass function matches data from local cluster surveys. Normalized to total mass, there are fewer low-mass (M star 10 10 M ) galaxies within the virial radius of clusters than in the field, primarily due to star formation quenching. Conversely, the simulations predict an overabundance of massive galaxies in clusters compared to the field that persists to their far outskirts (> 5 r 200c ). This is caused by a significantly increased stellar mass fraction of (sub-)haloes in the cluster environment, by up to ∼0.3 dex even well beyond r 200c . Haloes near clusters are also more concentrated than equally massive field haloes, but these two effects are largely uncorrelated.
We present the first results of hydrodynamical simulations that follow the formation of galaxies to the present day in nearly spherical regions of radius ∼20 h−1 Mpc drawn from the Millennium Simulation (Springel et al.). The regions have mean overdensities that deviate by (−2, −1, 0, +1, +2)σ from the cosmic mean, where σ is the rms mass fluctuation on a scale of ∼20 h−1 Mpc at z= 1.5. The simulations have mass resolution of up to ∼106 h−1 M⊙, cover the entire range of large‐scale cosmological environments, including rare objects such as massive clusters and sparse voids, and allow extrapolation of statistics to the (500 h−1 Mpc)3 Millennium Simulation volume as a whole. They include gas cooling, photoheating from an imposed ionizing background, supernova feedback and galactic winds, but no AGN. In this paper, we focus on the star formation properties of the model. We find that the specific star formation rate density at z≲ 10 varies systematically from region to region by up to an order of magnitude, but the global value, averaged over all volumes, closely reproduces observational data. Massive, compact galaxies, similar to those observed in the GOODS fields (Wiklind et al.), form in the overdense regions as early as z= 6, but do not appear in the underdense regions until z∼ 3. These environmental variations are not caused by a dependence of the star formation properties on environment, but rather by a strong variation of the halo mass function from one environment to another, with more massive haloes forming preferentially in the denser regions. At all epochs, stars form most efficiently in haloes of circular velocity vc∼ 250 km s−1. However, the star formation history exhibits a form of ‘downsizing’ (even in the absence of AGN feedback): the stars comprising massive galaxies at z= 0 have mostly formed by z= 1−2, whilst those comprising smaller galaxies typically form at later times. However, additional feedback is required to limit star formation in massive galaxies at late times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.