We report a method for introducing a glutamine synthetase (GS) selectable marker into myeloma cells in which transfectants are selected by growth in a glutamine-free medium. Vector amplification can subsequently be selected using the specific inhibitor of GS, methionine sulphoximine (MSX). Using this system, DNA sequences encoding a chimeric B72.3 IgG4 antibody were expressed from hCMV-MIE promoters in NSO myeloma cells. A cell line was isolated after a single round of selection for vector amplification which contains approximately 4 copies of the vector, secretes 10-15 pg/cell/day cB72.3 antibody during exponential growth and can accumulate 560 mg/l antibody in a fed-batch air-lift fermentation system. Productivity is stable in the absence of MSX selection.
SummaryRegulatory B cells (Bregs) play a critical role in the control of autoimmunity and inflammation. IL-10 production is the hallmark for the identification of Bregs. However, the molecular determinants that regulate the transcription of IL-10 and control the Breg developmental program remain unknown. Here, we demonstrate that aryl hydrocarbon receptor (AhR) regulates the differentiation and function of IL-10-producing CD19+CD21hiCD24hiBregs and limits their differentiation into B cells that contribute to inflammation. Chromatin profiling and transcriptome analyses show that loss of AhR in B cells reduces expression of IL-10 by skewing the differentiation of CD19+CD21hiCD24hiB cells into a pro-inflammatory program, under Breg-inducing conditions. B cell AhR-deficient mice develop exacerbated arthritis, show significant reductions in IL-10-producing Bregs and regulatory T cells, and show an increase in T helper (Th) 1 and Th17 cells compared with B cell AhR-sufficient mice. Thus, we identify AhR as a relevant contributor to the transcriptional regulation of Breg differentiation.
Our immune system is designed to protect us from danger. Upon pathogen invasion and tissue injury, activation of both innate and adaptive immunity enables us to combat infection and to repair tissue damage. Tenascin-C is a large, extracellular matrix glycoprotein that has a very tightly controlled pattern of expression. Little or no tenascin-C is expressed in most healthy adult tissues; however, it is rapidly and transiently induced at sites of tissue injury and infection. Persistent tenascin-C expression is associated with pathologies such as chronic, non-healing wounds, autoimmune diseases, cancer, and fibrotic diseases. We discuss the myriad roles that this multifunctional molecule plays during the immune response, with a focus on how tissue levels of tenascin-C are regulated and the consequences of misregulated tenascin-C expression in immune regulated disease pathogenesis.
Epoxyeicosatrienoic acids (EETs) are generated by the activity of both selective and also more general cytochrome p450 (CYP) enzymes on arachidonic acid and inactivated largely by soluble epoxide hydrolase (sEH), which converts them to their corresponding dihydroxyeicosatrienoic acids (DHETs). EETs have been shown to have a diverse range of effects on the vasculature including relaxation of vascular tone, cellular proliferation, and angiogenesis as well as the migration of smooth muscle cells. This paper will highlight the growing evidence that EETs also mediate a number of anti-inflammatory effects in the cardiovascular system. In particular, numerous studies have demonstrated that potentiation of EET activity using different methods can inhibit inflammatory gene expression and signalling pathways in endothelial cells and monocytes and in models of cardiovascular diseases. The mechanisms by which EETs mediate their effects are largely unknown but may include direct binding to peroxisome proliferator-activated receptors (PPARs), G-protein coupled receptors (GPCRs), or transient receptor potential (TRP) channels, which initiate anti-inflammatory signalling cascades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.