In summer, 2011, we investigated suspected glyphosate-resistant (GR) kochia in three chem-fallow fields (designated F1, F2, F3, each farmed by a different grower) in southern Alberta. This study characterizes glyphosate resistance in those populations, based on data from dose–response experiments. In a greenhouse experiment, the three populations exhibited a resistance factor ranging from 4 to 6 based on shoot biomass response (GR50ratios), or 5 to 7 based on survival response (LD50ratios). Similar results were found in a field dose–response experiment at Lethbridge, AB, in spring 2012 using the F2 kochia population. In fall 2011, we surveyed 46 fields within a 20-km radius of the three chem-fallow fields for GR kochia. In the greenhouse, populations were screened with glyphosate at 900 g ae ha−1. Seven populations were confirmed as GR, the farthest site located about 13 km from the three originally confirmed populations. An additional GR population more than 100 km away was later confirmed. Populations were screened for acetolactate synthase (ALS)–inhibitor (thifensulfuron : tribenuron) and dicamba resistance in the greenhouse, with molecular characterization of ALS-inhibitor resistance in the F1, F2, and F3 populations. All GR populations were resistant to the ALS-inhibiting herbicide, but susceptible to dicamba. ALS-inhibitor resistance in kochia was conferred by Pro197, Asp376, or Trp574amino acid substitutions. Based upon a simple empirical model with a parameter for selection pressure, calculated from weed relative abundance and glyphosate efficacy, and a parameter for seedbank longevity, kochia, wild oat, and green foxtail were the top three weeds, respectively, predicted at risk of selection for glyphosate resistance in the semiarid Grassland region of the Canadian prairies; wild oat, green foxtail, and cleavers species were predicted at greatest risk in the subhumid Parkland region. This study confirms the first occurrence of a GR weed in western Canada. Future research on GR kochia will include monitoring, biology and ecology, fitness, mechanism of resistance, and best management practices.
A randomized stratified survey was conducted in Alberta in 2017 to determine the distribution and abundance of multiple-resistant (acetolactate synthase (ALS) inhibitor, glycine, synthetic auxin) kochia. All populations were ALS inhibitor-resistant, with glyphosate and dicamba resistance confirmed in 50 and 18% of populations, respectively. Ten percent of populations exhibited resistance to all three site-of-action herbicides.
Weed resistance monitoring has been routinely conducted in the Northern Great Plains of Canada (Prairies) since the mid-1990s. Most recently, random surveys were conducted in Alberta in 2001, Manitoba in 2002, and Saskatchewan in 2003 totaling nearly 800 fields. In addition, nearly 1,300 weed seed samples were submitted by growers across the Prairies between 1996 and 2006 for resistance testing. Collected or submitted samples were screened for group 1 [acetyl-CoA carboxylase (ACCase) inhibitor] and/or group 2 [acetolactate synthase (ALS) inhibitor] resistance. Twenty percent of 565 sampled fields had an herbicide-resistant (HR) wild oat biotype. Most populations exhibited broad cross-resistance across various classes of group 1 or group 2 herbicides. In Manitoba, 22% of 59 fields had group 1–HR green foxtail. Group 2–HR biotypes of kochia were documented in Saskatchewan, common chickweed and spiny sowthistle in Alberta, and green foxtail and redroot pigweed in Manitoba. Across the Prairies, HR weeds are estimated to occur in fields covering an area of nearly 5 million ha. Of 1,067 wild oat seed samples submitted by growers and industry for testing between 1996 and 2006, 725 were group 1 HR, 34 group 2 HR, and 55 groups 1 and 2 HR. Of 80 submitted green foxtail samples, 26 were confirmed group 1 HR; most populations originated from southern Manitoba where the weed is most abundant. Similar to the field surveys, various group 2–HR biotypes were confirmed among submitted samples: kochia, wild mustard, field pennycress,Galiumspp., common chickweed, and common hempnettle. Information from grower questionnaires indicates patterns of herbicide usage are related to location, changing with cropping system. Two herbicide modes of action most prone to select resistance, groups 1 and 2, continue to be widely and repeatedly used. There is little evidence that growers are aware of the level of resistance within their fields, but a majority have adopted herbicide rotations to proactively or reactively manage HR weeds.
A late-summer survey of herbicide-resistant (HR) weeds was conducted in Alberta in 2007, Manitoba in 2008, and Saskatchewan in 2009, totaling 1,000 randomly selected annually cropped fields. In addition, we screened 1,091 weed seed samples (each sample from one field) submitted by Prairie growers between 2007 and 2011. Of 677 fields where wild oat samples were collected, 298 (44%) had an HR biotype. Group 1 (acetyl CoA carboxylase inhibitor)-HR wild oat was confirmed in 275 fields (41%), up from 15% in previous baseline surveys (2001 to 2003). Group 2 (acetolactate synthase)-HR wild oat was found in 12% of fields (vs. 8% in 2001 to 2003). Group 8 (triallate, difenzoquat)-HR wild oat was identified in only 8% of fields (not tested in 2001 to 2003); the frequency of occurrence of group 1+2-HR wild oat was similar (8%, vs. 3% in 2001 to 2003). Group 1-HR green foxtail was found in 27% of 209 fields sampled for the weed (vs. 6% in 2001 to 2003). Group 2-HR spiny sowthistle was confirmed in all Alberta fields sampled (vs. 67% in 2001); common chickweed was found mainly in Alberta in 40% of fields (vs. 17% in 2001). Group 2-HR weed biotypes not previously detected in the baseline surveys included false cleavers mainly in Alberta (17% of fields) and Saskatchewan (21%), Powell amaranth in Manitoba (16% of fields), wild mustard (three populations in Saskatchewan and Manitoba), and wild buckwheat (one population in Alberta). No sampled weed populations across the Prairies were found to be resistant to herbicides from group 4 (synthetic auxins), group 9 (glyphosate), or group 10 (glufosinate). Based on the proportion of total field area at each site infested with HR weeds, it is estimated that 7.7 million ha (29% of annually cropped land) are infested with HR weeds (eight-fold increase from 2001 to 2003), in a total field area of 9.9 million ha (37%)—over a two-fold increase. Of 816 cases of HR wild oat identified from submitted samples, 69% were group 1-HR, 15% group 2-HR, and 16% group 1+2-HR. Additionally, there were 10 populations of group 1-HR green foxtail in Saskatchewan or Manitoba, and six populations of group 1-HR Persian darnel in southern Alberta and Saskatchewan. Various group 2-HR broadleaf weeds were identified, including 17 wild mustard populations mainly from Saskatchewan and 39 cleavers populations across the three Prairie provinces. Herbicide-use data from 2006 to 2010 indicated continued reliance on group 1 herbicides in cereal crops and group 2 herbicides in pulse crops.
A survey of 109 fields was conducted across western Canada in spring 2007 to determine the extent of ALS-inhibitor and dicamba (synthetic auxin) resistance in kochia. Weed seedlings were collected from fields in three provinces of western Canada and transplanted into the greenhouse. Seeds were harvested from selfed plants, and the F1progeny were screened for resistance to the ALS-inhibitor mixture thifensulfuron–tribenuron or dicamba. All kochia populations were susceptible to dicamba. ALS inhibitor–resistant kochia was found in 85% of the fields surveyed in western Canada: 80 of 95 fields in Alberta, six of seven fields in Saskatchewan, and all seven fields in Manitoba. For the 93 ALS inhibitor–resistant populations, the mean frequency (±SE) of parental plants classified as resistant was 61 ± 3%. Most of the resistant populations (87%) were heterogeneous and contained both resistant and susceptible individuals.ALSsequence data (Pro197and Asp376mutations) and genotyping data (Trp574mutation) obtained for 87 kochia parental (i.e., field-collected) plants confirmed the presence of all three target-site mutations as well as two mutational combinations (Pro197+ Trp574, Asp376+ Trp574) in resistant individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.