Pharmaceuticals can enter the environment through disposal in toilets, sinks and general waste. In the UK, household medicines are correctly disposed of by returning them to a pharmacy. This study examined household patterns of medicine waste, storage and disposal practices via a cross-sectional survey with 663 UK adults. Multiple regression was used to explore the contribution of key variables on self-reported medicines disposal behaviour. Analysis demonstrated that age, information, awareness, probability, attitude and intention all predicted correct disposal behaviour. Results indicate that multiple factors influence different disposal destinations uniquely. Affect and age increase disposal in sink/toilet but reduce disposal in bin. Presence of children increase bin and sink/toilet disposal but decrease pharmacy returns. Awareness and received information on correct disposal reduce bin disposal and increase pharmacy returns. The results suggest people use different mental models for each destination with disposal in sink/toilets and bins considered quicker and safer in the presence of children or for those feeling anxious. It is important to understand the capability, opportunity and motivation people have to return medicines to the pharmacy in addition to raising awareness of correct medicine disposal.
Down-the-drain disposal of pharmaceuticals remains an overlooked and unrecognized source of environmental contamination that requires nontechnological “at-source” solutions. Monitoring of 31 pharmaceuticals over 7 days in five wastewater treatment plants (WWTPs) serving five cities in South-West UK revealed down-the-drain codisposal of six pharmaceuticals to three WWTPs (carbamazepine and propranolol in city A, sildenafil in city B, and diltiazem, capecitabine, and sertraline in city D), with a one-off record codisposal of estimated 253 pills = 40 g of carbamazepine and estimated 96 pills = 4 g of propranolol in city A accounting for their 10- and 3-fold respective increases in wastewater daily loads. Direct disposal of pharmaceuticals was found to affect the efficiency of wastewater treatment with much higher pharmaceutical removal (decrease in daily load) during “down-the-drain disposal” days. This is due to lack of conjugated glucuronide metabolites that are cleaved during “consumption-only” days, with the release of a parent pharmaceutical counterbalancing its removal. Higher removal of pharmaceuticals during down-the-drain disposal days reduced pharmaceutical loads reaching receiving environment, albeit with significant levels remaining. The estimated daily loads in receiving water downstream from a discharge point accounted for 13.8 ± 3.4 and 2.1 ± 0.2 g day –1 of carbamazepine and propranolol, respectively, during consumption-only days and peaked at 20.9 g day –1 (carbamazepine) and 4.6 g day –1 (propranolol) during down-the-drain disposal days. Actions are needed to reduce down-the-drain disposal of pharmaceuticals. Our recent work indicated that down-the-drain disposal of pharmaceuticals doubled since the last study in 2005, which may be due to the lack of information and messaging that informs people to dispose of unused medicines at pharmacies. Media campaigns that inform the public of how to safely dispose of medicines are key to improving rates of return and reducing pharmaceutical waste in the environment. The environment is a key motivator for returning unused medicines to a pharmacy and so messaging should highlight environmental risks associated with improper disposal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.