Recent advances in multiscale manufacturing enable fabrication of hollow-truss based lattices with dimensional control spanning seven orders of magnitude in length scale (from ;50 nm to ;10 cm), thus enabling the exploitation of nano-scale strengthening mechanisms in a macroscale cellular material. This article develops mechanical models for the compressive strength of hollow microlattices and validates them with a selection of experimental measurements on nickel microlattices over a wide relative density range (0.01-10%). The limitations of beam-theory-based analytical approaches for ultralight designs are emphasized, and suitable numerical (finite elements) models are presented. Subsequently, a novel computational platform is utilized to efficiently scan the entire design space and produce maps for optimally strong designs. The results indicate that a strong compressive response can be obtained by stubby lattice designs at relatively high densities (;10%) or by selectively thickening the nodes at ultra-low densities.
Recent advances in multi-scale manufacturing enable fabrication of hollow-truss based lattices with dimensional control spanning seven orders of magnitude in length scale (from ~50nm to ~10cm), offering tremendous potential for multifunctionality. Topology optimization is essential to realize the full potential of these micro-architected materials. This paper presents a novel optimal design and modeling platform, consisting of four interconnected tools: (i) a geometric modeling algorithm; (ii) a meshing algorithm; (iii) an optimal design code; and (iv) a communication interface with a commercial Finite Elements program (Abaqus). The powerfulness of the proposed platform is demonstrated for the optimization of specific stiffness in pyramidal hollow micro-lattices. R Figure 1. Schematic of a Micro-Architected Material based on a Hollow-Truss Pyramidal Lattice (from [1]).
This paper presents the design, optimization and manufacturing of a novel micro-fabricated load cell based on a double-ended tuning fork. The device geometry and operating voltages are optimized for maximum force resolution and range, subject to a number of manufacturing and electromechanical constraints. All optimizations are enabled by analytical modeling (verified by selected finite elements analyses) coupled with an efficient C++ code based on the particle swarm optimization algorithm. This assessment indicates that force resolutions of ∼0.5-10 nN are feasible in vacuum (∼1-50 mTorr), with force ranges as large as 1 N. Importantly, the optimal design for vacuum operation is independent of the desired range, ensuring versatility. Experimental verifications on a sub-optimal device fabricated using silicon-on-glass technology demonstrate a resolution of ∼23 nN at a vacuum level of ∼50 mTorr. The device demonstrated in this article will be integrated in a hybrid micro-mechanical test frame for unprecedented combinations of force resolution and range, displacement resolution and range, optical (or SEM) access to the sample, versatility and cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.