The thermal properties of engine oil are important traits affecting the ability of the oil to transfer heat from the engine. The larger the thermal conductivity and specific heat, the more efficiently the oil will transfer heat. In this work, we measured the thermal conductivity and specific heat of a conventional mineral oil-based diesel engine lubricant and a Group V-based LHR diesel engine lubricant as a function of temperature. We also measured the specific heat of ethylene glycol. The measured values are compared with manufacturers’ data for typical heat transfer fluids. The Group V-based engine oil had a higher thermal conductivity and slightly lower specific heat than the mineral oil-based engine oil. Both engine oils had values comparable to high-temperature heat transfer fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.