Sound localization was disrupted in young barn owls by chronically plugging one ear. Owls that were younger than 8 weeks of age at the time of ear plugging recovered normal localization accuracy while plugged, whereas those that were older than 8 weeks at the time of ear plugging did not. The end of the sensitive period for the adjustment of sound localization accuracy coincides with the maturation of the head and ears, suggesting that the exposure of the auditory system to stable, adult-like acoustic cues could play a role in bringing the sensitive period to a close. The results demonstrate that, early in development, associations between auditory cues and locations in space can be altered by experience.Animals localize sounds by associating sets of monaural and binaural cues with locations in space. The most reliable cues are binaural, i.e., differences in the timing and intensity of sounds at the two ears. The reliability of these cues results from the fact that they depend only upon the size and shape of the head and ears and do not require assumptions about the properties of the original sound stimulus or the acoustic environment (Searle et al., 1976). Therefore, once the auditory system is calibrated to the passive acoustic properties of the head and ears and correlates frequency-specific binaural differences with locations in space, these binaural cues become unconditional indicators of the location of a sound source.In the course of normal development, growth of the head and ears increases the range of binaural disparities experienced by the auditory system and alters the correlations of binaural cues with locations in space. Among adults, the size of the head and ears varies; therefore the associations between binaural cues and locations in space differ slightly for each individual. In light of this variability, how does the auditory system establish correct associations between binaural cues and locations in space? One solution might be that calibration of the sound localization circuitry is based upon sensory experience. To explore this possibility we have investigated
This report describes the binaural basis of the auditory space map in the optic tectum of the barn owl (Tyto alba). Single units were recorded extracellularly in ketamine-anesthetized birds. Unit tuning for interaural differences in timing and intensity of wideband noise was measured using digitally synthesized sound presented through earphones. Spatial receptive fields of the same units were measured with a free field sound source. Auditory units in the optic tectum are sharply tuned for both the azimuth and the elevation of a free field sound source. To determine the binaural cues that could be responsible for this spatial tuning, we measured in the ear canals the amplitude and phase spectra produced by a free field noise source and calculated from these measurements the interaural differences in time and intensity associated with each of 178 locations throughout the frontal hemisphere. For all frequencies, interaural time differences (ITDs) varied systematically and most strongly with source azimuth. The pattern of variation of interaural intensity differences (IIDs) depended on frequency. For low frequencies (below 4 kHz) IID varied primarily with source azimuth, whereas for high frequencies (above 5 kHz) IID varied primarily with source elevation. Tectal units were tuned for interaural differences in both time and intensity of dichotic stimuli. Changing either parameter away from the best value for the unit decreased the unit's response. The tuning of units to either parameter was sharp: the width of ITD tuning curves, measured at 50% of the maximum response with IID held constant (50% tuning width), ranged from 18 to 82 microsecs. The 50% tuning widths of IID tuning curves, measured with ITD held constant, ranged from 8 to 37 dB. For most units, tuning for ITD was largely independent of IID, and vice versa. A few units exhibited systematic shifts of the best ITD with changes in IID (or shifts of the best IID with changes in ITD); for these units, a change in the value of one parameter to favor one ear shifted the best value of the other parameter in favor of the same ear, i.e., in the direction opposite to that expected from "time-intensity trading." Overall sound intensity had little or no effect on ITD tuning, but did increase the best IIDs of units tuned to nonzero IIDs. The tuning of units for ITD and IID changed systematically along different dimensions of the optic tectum to create coextensive, independent neurophysiological maps of ITD and IID.(ABSTRACT TRUNCATED AT 400 WORDS)
The nervous system performs computations to process information that is biologically important. Some of these computations occur in maps--arrays of neurons in which the tuning of neighboring neurons for a particular parameter value varies systematically. Computational maps transform the representation of information into a place-coded probability distribution that represents the computed values of parameters by sites of maximum relative activity. Numerous computational maps have been discovered, including visual maps of line orientation and direction of motion, auditory maps of amplitude spectrum and time interval, and motor maps of orienting movements. The construction of the auditory map of space is the most thoroughly understood: information about interaural delays and interaural intensity differences is processed in parallel by separate computational maps, and the outputs of these maps feed into a higher order processor that integrates sets of cues corresponding to sound source locations and creates a map of auditory space. Computational maps represent ranges of parameter values that are relevant to the animal, and may differentially magnify the representation of values that are of particular importance. The tuning of individual neurons for values of a mapped parameter is broad relative to the range of the map. Consequently, neurons throughout a large portion of a computational map are activated by any given stimulus, and precise information about the mapped parameter is coded by the locations of peak activity. There are a number of advantages of performing computations in maps. First, information is processed rapidly because the computations are preset and are executed in parallel. Second, maps simplify the schemes of connectivity required for processing and utilizing the information. Third, a common, mapped representation of the results of different kinds of computations allows the nervous system to employ a single strategy for reading the information. Finally, maps enable several classes of neuronal mechanisms to sharpen tuning in a manner not possible for information that is represented in a non-topographic code.
We studied the ability of barn owls to recover accurate sound localization after being raised with one ear occluded. Most of the owls had ear plugs inserted before they reached adult size, and therefore they never experienced normal adult localization cues until their ear plugs were removed. Upon removal of their ear plugs, these owls exhibited large systematic sound localization errors. The rate at which they recovered accurate localization decreased with the age of the bird at the time of plug removal, and recovery essentially ceased when owls reached 38 to 42 weeks of age. We interpret this age as the end of a critical period for the consolidation of associations between auditory cues and locations in space. Owls that had experienced adult localization cues for a short period of time before ear plugging recovered normal accuracy rapidly, even if they remained plugged well past the end of the critical period. This suggests that a brief exposure to normal adult cues early in the critical period is sufficient to enable the recovery of localization accuracy much later in life.
Vision during early life plays an important role in calibrating sound localization behavior. This study investigates the effects of visual deprivation on sound localization and on the neural representation of auditory space. Nine barn owls were raised with eyelids sutured closed; one owl was congenitally anophthalmic. Data from these birds were compared with data from owls raised with normal visual experience. Sound localization behavior was significantly less precise in blind- reared owls than in normal owls. The scatter of localization errors was particularly large in elevation, though it was abnormally large in both dimensions. However, there was no systematic bias to the localization errors measured over a range of source locations. This indicates that the representation of auditory space is degraded in some way for blind- reared owls, but on average is properly calibrated. The spatial tuning of auditory neurons in the optic tectum was studied in seven of the blind-reared owls to assess the effects of early visual deprivation on the neural representation of auditory space. In normal owls, units in the optic tectum are sharply tuned for sound source location and are organized systematically according to the locations of their receptive fields to form a map of auditory space. In blind-reared owls, the following auditory properties were abnormal: (1) auditory tuning for source elevation was abnormally broad, (2) the progression of the azimuths and elevations of auditory receptive fields across the tectum was erratic, and (3) in five of the seven owls, the auditory representation of elevation was systematically stretched, and in the two others large portions of the representation of elevation were flipped upside down. The following unit properties were apparently unaffected by blind rearing: (1) the sharpness of tuning for sound source azimuth, (2) the orientation of the auditory representation of azimuth, and (3) the mutual alignment of the auditory and visual receptive fields in the region of the tectum representing the area of space directly in front of the animal. The data demonstrate that the brain is capable of generating an auditory map of space without vision, but that the normal precision and topography of the map depend on visual experience. The space map results from the tuning of tectal units for interaural intensity differences (IIDs) and interaural time differences (ITDs; Olsen et al., 1989).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.