Using molecular cloning techniques, human homologs of the known members of the trk family of neurotrophin receptors have been cloned and sequenced. Overall, there is a high degree of similarity between the human sequences and those from other mammals; however, there are differences in splicing patterns. There are two spliced forms of the extracellular domain of trkC in the human, a finding that has not been described in other species. In contrast, fewer spliced forms were detected of the intracellular domains of human trkB and trkC than has been described in other mammals. Northern analysis and in situ hybridization experiments indicate that the human trks are expressed in a similar pattern to that described in other mammals. Expression of the trk extracellular domains as fusion proteins with IgG heavy chain yields soluble molecules that mimic intact trks in their binding specificity and affinity. These soluble chimeras block the biological activity of their cognate neurotrophin(s) in vitro.
The flk-2/flt-3 receptor tyrosine kinase was cloned from a hematopoietic stem cell population and is considered to play a potential role in the developmental fate of the stem cell. Using antibodies derived against the extracellular domain of the receptor, we show that stem cells from both murine fetal liver and bone marrow can express flk-2/flt-3. However, in both these tissues, there are stem cell populations that do not express the receptor. Cell cycle analysis shows that stem cells that do not express the receptor have a greater percentage of the population in G0 when compared with the flk-2/flt-3- positive population. Development of agonist antibodies to the receptor shows a proliferative role for the receptor in stem cell populations. Stimulation with an agonist antibody gives rise to an expansion of both myeloid and lymphoid cells and this effect is enhanced by the addition of kit ligand. These studies serve to further illustrate the importance of the flk-2/flt-3 receptor in the regulation of the hematopoietic stem cell.
Dye molecules were modified through exchange of a central nucleofugal functional group. Profound changes in the bandgap spacing and HOMO-LUMO levels were observed. Concentration quenching was observed for all the dyes and increases in external quantum efficiency of devices were observed after dyes were diluted through distribution within a polymer host. The addition of the phenoxy functional group in one derivatized dye appeared to reduce the effect of fluorescence concentration quenching. All characterization herein allows for prediction of the effects of other nucleofugal syntheses on these dyes for more successful application in NIR bulk heterojunction photovoltaics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.