Deep Learning (DL), a successful promising approach for discriminative and generative tasks, has recently proved its high potential in 2D medical imaging analysis; however, physiological data in the form of 1D signals have yet to be beneficially exploited from this novel approach to fulfil the desired medical tasks. Therefore, in this paper we survey the latest scientific research on deep learning in physiological signal data such as electromyogram (EMG), electrocardiogram (ECG), electroencephalogram (EEG), and electrooculogram (EOG). We found 147 papers published between January 2018 and October 2019 inclusive from various journals and publishers. The objective of this paper is to conduct a detailed study to comprehend, categorize, and compare the key parameters of the deep-learning approaches that have been used in physiological signal analysis for various medical applications. The key parameters of deep-learning approach that we review are the input data type, deep-learning task, deep-learning model, training architecture, and dataset sources. Those are the main key parameters that affect system performance. We taxonomize the research works using deep-learning method in physiological signal analysis based on: (1) physiological signal data perspective, such as data modality and medical application; and (2) deep-learning concept perspective such as training architecture and dataset sources.
BackgroundBlood pressure is a critical bio-signal and its importance has been increased with the aged society and the growth of cardiovascular disease population. However, most of hypertensive patients have been suffered the inconvenience in monitoring blood pressure in daily life because the measurement of the blood pressure depends on the cuff-based technique. Nowadays there are many trials to measure blood pressure without cuff, especially, photoplethysmography (PPG) based research is carried out in various ways.MethodsOur research is designed to hypothesis the relationship between vessel wall movement and pressure-flow relationship of PPG and to validate its appropriateness by experimental methods. PPG waveform is simplified by approximate model, and then it is analyzed as the velocity and the acceleration of blood flow using the derivatives of PPG. Finally, we develop pressure index (PI) as an estimation factor of blood pressure by combining of statistically significant segments of photoplethysmographic waveform.ResultsTwenty-five subjects were participated in the experiment. As a result of simulation, correlation coefficients between developed PI and blood pressure were represented with R = 0.818, R = 0.827 and R = 0.615 in systolic blood pressure, pulse pressure and mean arterial pressure, respectively, and both of result showed the meaningful statistically significance (P < 0.05).ConclusionsCurrent study can estimate only the relative variation of blood pressure but could not find the absolute pressure value. Moreover, proposed index has the limitation of diastolic pressure tracing. However, the result shows that the proposed PI is statistically significantly correlated with blood pressures, and it suggests that the proposed PI as a promising additional parameter for the cuff less blood pressure monitoring.
Post-stroke gait dysfunction occurs at a very high prevalence. A practical method to quantitatively analyze the characteristics of hemiparetic gait is needed in both clinical and community settings. This study developed a 10-channeled textile capacitive pressure sensing insole (TCPSI) with a real-time monitoring system and tested its performance through hemiparetic gait pattern analysis. Thirty-five subjects (18 hemiparetic, 17 healthy) walked down a 40-m long corridor at a comfortable speed while wearing TCPSI inside the shoe. For gait analysis, the percentage of the plantar pressure difference (PPD), the step count, the stride time, the coefficient of variation, and the phase coordination index (PCI) were used. The results of the stroke patients showed a threefold higher PPD, a higher step count (41.61 ± 10.7), a longer average stride time on the affected side, a lower mean plantar pressure on the affected side, higher plantar pressure in the toe area and the lateral side of the foot, and a threefold higher PCI (hemi: 19.50 ± 13.86%, healthy: 5.62 ± 5.05%) compared to healthy subjects. This study confirmed that TCPSI is a promising tool for distinguishing hemiparetic gait patterns and thus may be used as a wearable gait function evaluation tool, the external feedback gait training device, and a simple gait pattern analyzer for both hemiparetic patients and healthy individuals.
The electro-conductive fabric (e-textile or e-fabric) as an electrode for ECG measurement is one of the best application for ubiquitous healthcare system. However, it is difficult to measure the bio-signal due to its sensitivity variation caused by impedance change, especially by motion of the subject. In this paper, adaptive motion artifacts reduction using motion information from 3-axis accelerometer is proposed and analyzed in quantitative manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.