An epigenetic change is a heritable genetic alteration that does not involve any nucleotide changes. While the methylation of specific DNA regions such as CpG islands or histone modifications, including acetylation or methylation, have been investigated in detail, the role of small RNAs in epigenetic regulation is largely unknown. Among the many types of small RNAs, tRNA-derived small RNAs (tsRNAs) represent a class of noncoding small RNAs with multiple roles in diverse physiological processes, including neovascularization, sperm maturation, immune modulation, and stress response. Regarding these roles, several pioneering studies have revealed that dysregulated tsRNAs are associated with human diseases, such as systemic lupus, neurological disorder, metabolic disorder, and cancer. Moreover, recent findings suggest that tsRNAs regulate the expression of critical genes linked with these diseases by a variety of mechanisms, including epigenetic regulation. In this review, we will describe different classes of tsRNAs based on their biogenesis and will focus on their role in epigenetic regulation.
Grading the pathogenicity of BRCA1/2 variants has great clinical importance in patient treatment as well as in the prevention and screening of hereditary breast and ovarian cancer (HBOC). For accurate evaluation, confirming the splicing effect of a possible splice site variant is crucial. We report a significant splicing variant (c.5074+3A>C) in BRCA1 in a patient with recurrent ovarian cancer. Next-generation sequencing (NGS) of BRCA1/2 from patient’s peripheral blood identified the variant, which was strongly suspected of being a splicing mutation based on in silico predictions. Direct RNA analysis yielded multiple transcripts, and TOPO cloning of the complementary DNA (cDNA) and Sanger sequencing revealed an aberrant transcript with an insertion of the first 153 bp of intron 17, and another transcript with the 153 bp insertion along with an exon 18 deletion. A premature termination codon was presumed to be formed by the 153 bp partial intron retention common to the two transcripts. Therefore, BRCA1 c.5074+3A>C was classified as a likely pathogenic variant. Our findings show that active use of functional studies of variants suspected of altered splicing are of great help in classifying them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.