The effect of a trace Al addition (0, 0.01, 0.05 and 0.1 wt. %) in the Sn-2Ag-5Bi solder alloy on wettability and intermetallic compound (IMC) formation of the alloy was investigated. The interface between the solder and a Cu(17 µm)/Ni(4 µm)/Au (0.02 µm) under bump metallized (UBM) substrate was studied. The microstructure of the bulk solder and the interface of the soldered joints was observed in a scanning electron microscope (SEM), and the thickness of the interface reaction layers was estimated. Various IMC phases were identified by energy dispersive spectroscopy (EDS) and by the electron probe micro analyzer (EPMA). The experimental results indicated that the addition of 0.01 wt. % Al in the Sn-2Ag-5Bi solder alloy significantly improved the wettability of the solder more than the other Al additions did. The IMC layer between the bulk Sn-2Ag5Bi-0.01Al solder and the Cu/Ni/Au UBM substrate was almost uniform and thinner than those between the solders containing 0, 0.05, and 0.1 wt. % Al and their respective Cu/Ni/Au UBM substrates. Furthermore, the growth rate of the IMC layer between the Sn-2Ag-5Bi-0.01Al solder and Cu/Ni/Au UBM after 1 to 10 reflow times was lower than that of the IMC layer between the Sn-2Ag-5Bi solder and Cu/Ni/Au UBM. The IMCs in the solder joint interface (e.g., Ni3Sn4) of the Sn-2Ag-5Bi-0.01Al solder were well distributed near the Bi and fine Ag3Sn. The addition of 0.01 wt. % Al in the Sn-2Ag-5Bi solder yielded the best wetting properties for the solder and the minimum growth rate of the IMCs because it increased the nucleation rate of Ag3Sn and uniformly segregated the Bi phase.
Less power consumption, lower cost, smaller size and more functionality are the increasing demands for consumer electronic devices. The three dimensional(3-D) TSV packaging technology is the potential solution to meet this requirement because it can supply short vertical interconnects and high input/output(I/O) counts. Cu(Copper) has usually been chosen to fill the TSV because of its high conductivity, low cost and good compatibility with the multilayer interconnects process. However, the CTE mismatch and Cu ion drift under thermal stress can raise reliability issues. This study discribe the thermal stress reliability trend for successful implementation of 3-D packaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.