SUMMARY Despite extensive study, few therapeutic targets have been identified for glioblastoma (GBM). Here we show that patient derived glioma sphere cultures (GSCs) that resemble either the proneural (PN) or mesenchymal (MES) transcriptomal subtypes differ significantly in their biological characteristics. Moreover, we found that a subset of the PN GSCs undergo differentiation to a MES state in a TNFα/NF-κB dependent manner with an associated enrichment of CD44 subpopulations and radio-resistant phenotypes. We present data to suggest that the tumor microenvironment cell types such as macrophages/microglia may play an integral role in this process. We further show that the MES signature, CD44 expression, and NF-κB activation correlate with poor radiation response and shorter survival in patients with GBM.
Glioblastoma (GBM) is a devastating and incurable brain tumour, with a median overall survival of fifteen months. Identifying the cell of origin that harbours mutations that drive GBM could provide a fundamental basis for understanding disease progression and developing new treatments. Given that the accumulation of somatic mutations has been implicated in gliomagenesis, studies have suggested that neural stem cells (NSCs), with their self-renewal and proliferative capacities, in the subventricular zone (SVZ) of the adult human brain may be the cells from which GBM originates. However, there is a lack of direct genetic evidence from human patients with GBM. Here we describe direct molecular genetic evidence from patient brain tissue and genome-edited mouse models that show astrocyte-like NSCs in the SVZ to be the cell of origin that contains the driver mutations of human GBM. First, we performed deep sequencing of triple-matched tissues, consisting of (i) normal SVZ tissue away from the tumour mass, (ii) tumour tissue, and (iii) normal cortical tissue (or blood), from 28 patients with isocitrate dehydrogenase (IDH) wild-type GBM or other types of brain tumour. We found that normal SVZ tissue away from the tumour in 56.3% of patients with wild-type IDH GBM contained low-level GBM driver mutations (down to approximately 1% of the mutational burden) that were observed at high levels in their matching tumours. Moreover, by single-cell sequencing and laser microdissection analysis of patient brain tissue and genome editing of a mouse model, we found that astrocyte-like NSCs that carry driver mutations migrate from the SVZ and lead to the development of high-grade malignant gliomas in distant brain regions. Together, our results show that NSCs in human SVZ tissue are the cells of origin that contain the driver mutations of GBM.
Focal cortical dysplasia type II (FCDII) is a sporadic developmental malformation of the cerebral cortex characterized by dysmorphic neurons, dyslamination and medically refractory epilepsy. It has been hypothesized that FCD is caused by somatic mutations in affected regions. Here, we used deep whole-exome sequencing (read depth, 412-668×) validated by site-specific amplicon sequencing (100-347,499×) in paired brain-blood DNA from four subjects with FCDII and uncovered a de novo brain somatic mutation, mechanistic target of rapamycin (MTOR) c.7280T>C (p.Leu2427Pro) in two subjects. Deep sequencing of the MTOR gene in an additional 73 subjects with FCDII using hybrid capture and PCR amplicon sequencing identified eight different somatic missense mutations found in multiple brain tissue samples of ten subjects. The identified mutations accounted for 15.6% of all subjects with FCDII studied (12 of 77). The identified mutations induced the hyperactivation of mTOR kinase. Focal cortical expression of mutant MTOR by in utero electroporation in mice was sufficient to disrupt neuronal migration and cause spontaneous seizures and cytomegalic neurons. Inhibition of mTOR with rapamycin suppressed cytomegalic neurons and epileptic seizures. This study provides, to our knowledge, the first evidence that brain somatic activating mutations in MTOR cause FCD and identifies mTOR as a treatment target for intractable epilepsy in FCD.
Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome Atlas (TCGA), we identified the transcriptional coactivator with PDZ-binding motif (TAZ ), to be highly associated with the MES network. TAZ expression was lower in proneural (PN) GBMs and lower-grade gliomas, which correlated with CpG island hypermethylation of the TAZ promoter compared with MES GBMs. Silencing of TAZ in MES glioma stem cells (GSCs) decreased expression of MES markers, invasion, self-renewal, and tumor formation. Conversely, overexpression of TAZ in PN GSCs as well as murine neural stem cells (NSCs) induced MES marker expression and aberrant osteoblastic and chondrocytic differentiation in a TEAD-dependent fashion. Using chromatin immunoprecipitation (ChIP), we show that TAZ is directly recruited to a majority of MES gene promoters in a complex with TEAD2. The coexpression of TAZ, but not a mutated form of TAZ that lacks TEAD binding, with plateletderived growth factor-B (PDGF-B) resulted in high-grade tumors with MES features in a murine model of glioma. Our studies uncover a direct role for TAZ and TEAD in driving the MES differentiation of malignant glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.