As the world’s population grows and food needs diversification, the demand for cereals and horticultural crops with beneficial traits increases. In order to meet a variety of demands, suitable cultivars and innovative breeding methods need to be developed. Breeding methods have changed over time following the advance of genetics. With the advent of new sequencing technology in the early 21st century, predictive breeding, such as genomic selection (GS), emerged when large-scale genomic information became available. GS shows good predictive ability for the selection of individuals with traits of interest even for quantitative traits by using various types of the whole genome-scanning markers, breaking away from the limitations of marker-assisted selection (MAS). In the current review, we briefly describe the history of breeding techniques, each breeding method, various statistical models applied to GS and methods to increase the GS efficiency. Consequently, we intend to propose and define the term digital breeding through this review article. Digital breeding is to develop a predictive breeding methods such as GS at a higher level, aiming to minimize human intervention by automatically proceeding breeding design, propagating breeding populations, and to make selections in consideration of various environments, climates, and topography during the breeding process. We also classified the phases of digital breeding based on the technologies and methods applied to each phase. This review paper will provide an understanding and a direction for the final evolution of plant breeding in the future.
One of the abiotic stresses, salt stress, has an impact on the production and development of crops around the world. Sorghum is a functional genomics model crop of C4 plants due to its small genome size, and it is suitable for providing a clue to the mechanism associated with salt tolerance at the transcriptomic level. However, the mechanism of salt-related genes in sorghum has not been well described. RNA sequencing, using QuantSeq, was performed on two Korean cultivars, ‘Sodamchal’ and ‘Nampungchal’, which are known to have different intensities in response to salt stress, between a control and high-salinity treatment over a different time-course. In addition, physiological responses such as the proline, anthocyanin, chlorophyll, and reducing sugar contents were evaluated under the salt-stress treatment between these two sorghum cultivars. Moreover, differentially expressed genes (DEGs) between the Nampungchal and Sodamchal cultivars were identified in their leaves and roots, respectively. Moreover, the function of DEGs was confirmed through GO classification and KEGG pathway. We also analyzed the correlation between the selection pressure with DEGs by identifying Ka/Ks of DEGs. In the breeding process, the role of positive or negative selected genes was analyzed. Therefore, a new hypothesis on selection pressure was proposed from the breeding perspective of cultivars. A comparative analysis of the two sorghum cultivars provides candidate genes involved in the salt-stress response and may offer a better understanding of the salt-tolerance mechanism in sorghum.
Salinity stress is one of the most important abiotic stresses that causes great losses in crop production worldwide. Identifying the molecular mechanisms of salt resistance in sorghum will help develop salt-tolerant crops with high yields. Sorghum (Sorghum bicolor (L.) Moench) is one of the world’s four major grains and is known as a plant with excellent adaptability to salt stress. Among the various genotypes of sorghum, a Korean cultivar Nampungchal is also highly tolerant to salt. However, little is known about how Nampungchal responds to salt stress. In this study, we measured various physiological parameters, including Na+ and K+ contents, in leaves grown under saline conditions and investigated the expression patterns of differentially expressed genes (DEGs) using QuantSeq analysis. These DEG analyses revealed that genes up-regulated in a 150 mM NaCl treatment have various functions related to abiotic stresses, such as ERF and DREB. In addition, transcription factors such as ABA, WRKY, MYB, and bZip bind to the CREs region of sorghum and are involved in the regulation of various abiotic stress-responsive transcriptions, including salt stress. These findings may deepen our understanding of the mechanisms of salt tolerance in sorghum and other crops.
The radish is a highly self-incompatible plant, and consequently it is difficult to produce homozygous lines. Bud pollination in cross-fertilization plants should be done by opening immature pollen and attaching pollen to mature flowers. It accordingly takes a lot of time and effort to develop lines with fixed alleles. In the current study, a haploid breeding method has been applied to obtain homozygous plants in a short period of time by doubling chromosomes through the induction of a plant body in the haploid cells, in order to shorten the time to breed inbred lines. We constructed genetic maps with an F1 population derived by crossing parents that show a superior and inferior ability to regenerate microspores, respectively. Genetic maps were constructed from the maternal and parental maps, separately, using the two-way pseudo-testcross model. The phenotype of the regeneration rate was examined by microspore cultures and a quantitative trait loci (QTL) analysis was performed based on the regeneration rate. From the results of the culture of microspores in the F1 population, more than half of the group did not regenerate, and only a few showed a high regeneration rate. A total of five significant QTLs were detected in the F1 population, and five candidate genes were found based on the results. These candidate genes are divided into two classes, and appear to be related to either PRC2 subunits or auxin synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.