In South Korea, where there are no resources such as natural gas or crude oil, research on alternative fuels has been actively conducted since the 1990s. The research on synthetic oil is subdivided into Coal to Liquid (CTL), Gas to Liquid (GTL), Biomass to Liquid (BTL), etc., and was developed with the focus on catalysts, their preparation, reactor types, and operation technologies according to the product to be obtained. In Fischer–Tropsch synthesis for synthetic oil from syngas, stability, CO conversion rate, and product selectivity of catalysts depends on the design of their components, such as their active material, promoter, and support. Most of the developed catalysts were Fe- and Co-based catalysts and were developed in spherical and cylindrical shapes according to the reactor type. Recently, hybrid catalysts in combination with cracking catalysts were developed to control the distribution of the product. In this review, we survey recent studies related to the design of catalysts for production of light hydrocarbons and middle distillates, including hybrid catalysts, encapsulated core–shell catalysts, catalysts with active materials with well-organized sizes and shapes, and catalysts with shape- and size-controlled supports. Finally, we introduce recent research and development (R&D) trends in the production of light hydrocarbons and middle distillates and in the catalytic processes being applied to the development of catalysts in Korea.
Since the global shock caused by COVID-19, interest in immune-enhancing materials is rapidly increasing, therefore, the development of novel materials is necessary from the industrial and health perspectives. In this study, we selected Nelumbo nucifera Gaertner Seed Extract (NSE) and evaluated immune enhancement effect by using RAW 264.7 murine macrophage cells. NSE significantly up-regulated production of nitric oxide and reactive oxygen species without affecting cell viability in RAW 264.7 cells. Additionally, NSE exhibited an increase of inducible nitric oxide synthase and cyclooxygenase-2 expression in RAW 264.7 cells. The enzyme-linked immunosorbent assay results showed that NSE-treatment significantly enhanced production of interleukin 6 and tumor necrosis factor-α in RAW 264.7 cells. Furthermore, we observed that NSE significantly up-regulated phosphorylation of p65, I kappa B kinase α/β, and I kappa B (IκB) α as well as down-regulation of IκB α expression in RAW 264.7 cells. Our findings indicate that NSE could be the potential health-functional food material with capacity of improving immunity via Nuclear factor-kappa B signaling pathway.
Due to the COVID-19 pandemic, the immuneenhancing health functional food market that protects our bodies from pathogens such as viruses continues to grow. In this study, we aimed to prove the Cheonggukjang, a high-nutrient food with high protein, fat, and dietary fiber content, as an immuneenhancing nutraceutical. Cheonggukjang water extract (CWE) increased the production of nitric oxide, reactive oxygen species, and cytokines such interleukin (IL)-6, IL-1β, and tumor necrosis factor-α without affecting viability in RAW 264.7 cells. Furthermore, CWE significantly upregulated the expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells. CWE enhanced the phosphorylation of I kappa B kinase α/β and I kappa B (IκB)α, as well as the degradation of IκBα. CWE also induced increased phosphorylation of nuclear factor-kappa B p65 and facilitated the redistribution of p65 from the cytoplasm to the nucleus in RAW 264.7 cells. These findings suggest that CWE has potential as a health functional food material that can enhance the innate immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.