Recently, various bioelectronic nose devices based on human receptors were developed for mimicking a human olfactory system. However, such bioelectronic nose devices could operate in an aqueous solution, and it was often very difficult to detect insoluble gas odorants. Here, we report a portable bioelectronic nose platform utilizing a receptor protein-based bioelectronic nose device as a sensor and odorant-binding protein (OBP) as a transporter for insoluble gas molecules in a solution, mimicking the functionality of human mucosa. Our bioelectronic nose platform based on I7 receptor exhibited dose-dependent responses to octanal gas in real time. Furthermore, the bioelectronic platforms with OBP exhibited the sensor sensitivity improved by ∼100% compared with those without OBP. We also demonstrated the detection of odorant gas from real orange juice and found that the electrical responses of the devices with OBP were much larger than those without OBP. Since our bioelectronic nose platform allows us to directly detect gas-phase odorant molecules including a rather insoluble species, it could be a powerful tool for versatile applications and basic research based on a bioelectronic nose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.