The authors investigated the field emission characteristics of printed carbon nanotubes (CNTs) on KOVAR substrates with micro- and nanosize line patterns. Microsized line patterns were fabricated using photolithography techniques followed by an inductive coupled plasma-reactive ion etching process, and laser interference lithography techniques were used to fabricate uniform nanosized patterns over a relatively large area. CNTs were printed on the patterned substrate using a screen printing method. The field emission characteristics of each patterned substrate were compared to those of a nonpatterned substrate. Results revealed that varying the pattern size has an influence on the field emission characteristics. The reduction of the pattern size results in an increase in the total surface area. This surface patterning is found to provide additional areas for CNTs to adhere to the substrates, which, in turn, results in better adhesion of CNTs. As the size of the pattern is reduced, the field emission properties are improved. Specifically, substrates with nanosized patterns exhibited both the lowest turn-on field and the highest field enhancement factor (β).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.