We propose an accelerometer-based gesture recognition method for smartphone users. In our method, similarities between a new time series accelerometer data and each gesture exemplar are computed with DTW algorithm, and then the best matching gesture is determined based on k-NN algorithm. In order to investigate the performance of our method, we implemented a gesture recognition program working on an Android smartphone and a gesture-based teleoperating robot system. Through a set of user-mixed and user-independent experiments, we showed that the proposed method and implementation have high performance and scalability.
This paper presents the design of an arm gesture recognition system using Kinect sensor. A variety of methods have been proposed for gesture recognition, ranging from the use of Dynamic Time Warping(DTW) to Hidden Markov Models(HMM). Our system learns a unique HMM corresponding to each arm gesture from a set of sequential skeleton data. Whenever the same gesture is performed, the trajectory of each joint captured by Kinect sensor may much differ from the previous, depending on the length and/or the orientation of the subject's arm. In order to obtain the robust performance independent of these conditions, the proposed system executes the feature transformation, in which the feature vectors of joint positions are transformed into those of angles between joints. To improve the computational efficiency for learning and using HMMs, our system also performs the k-means clustering to get one-dimensional integer sequences as inputs for discrete HMMs from high-dimensional real-number observation vectors. The dimension reduction and discretization can help our system use HMMs efficiently to recognize gestures in real-time environments. Finally, we demonstrate the recognition performance of our system through some experiments using two different datasets.
Activity recognition using smartphone accelerometer suffers from the user dependency problem that acceleration patterns of one user differ from those of others for the same activity. Moreover, it also suffers from the position dependency problem since a smartphone may be placed in any pockets or hands. In order to overcome these problems, this paper proposes an effective activity recognition method which is less dependent with both specific users and specific positions of the smartphone. Based on the proposed method, we implement a real-time activity recognition system working on an Android smartphone. Throughout some experiments with 6642 examples collected from different users and different positions, we investigate the performance of our activity recognition system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.