Abstractβ-Carotene has shown antioxidant and antiinflammatory activities; however, its molecular mechanism has not been clearly defined. We examined in vitro and in vivo regulatory function of β-carotene on the production of nitric oxide (NO) and PGE2 as well as expression of inducible NO synthase (iNOS), cyclooxygenase-2, TNF-α, and IL-1β. β-Carotene inhibited the expression and production of these inflammatory mediators in both LPSstimulated RAW264.7 cells and primary macrophages in a dose-dependent fashion as well as in LPS-administrated mice. Furthermore, this compound suppressed NF-κB activation and iNOS promoter activity in RAW264.7 cells stimulated with LPS. β-Carotene blocked nuclear translocation of NF-κB p65 subunit, which correlated with its inhibitory effect on IκBα phosphorylation and degradation. This compound directly blocked the intracellular accumulation of reactive oxygen species in RAW264.7 cells stimulated with LPS as both the NADPH oxidase inhibitor diphenylene iodonium and antioxidant pyrrolidine dithiocarbamate did. The inhibition of NADPH oxidase also inhibited NO production, iNOS expression, and iNOS promoter activity. These results suggest that β-carotene possesses anti-inflammatory activity by functioning as a potential inhibitor for redox-based NF-κB activation, probably due to its antioxidant activity.
Nitric oxide (NO) functions not only as an important signaling molecule in the brain by producing cGMP, but also regulates neuronal cell apoptosis. The mechanism by which NO regulates apoptosis is unclear. In this study, we demonstrated that NO, produced either from the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) or by transfection of neuronal NO synthase, suppressed 6-hydroxydopamine (6-OHDA)-induced apoptosis in PC12 cells by inhibiting mitochondrial cytochrome c release, caspase-3 and -9 activation, and DNA fragmentation. This protection was significantly reversed by the soluble guanylyl cyclase inhibitor 1H-(1,2,4)-oxadiazole[4,3-a]quinoxalon-1-one, indicating that cGMP is a key mediator in NO-mediated anti-apoptosis. Moreover, the membrane-permeable cGMP analog 8-Br-cGMP inhibited 6-OHDA-induced apoptosis. These anti-apoptotic effects of SNAP and 8-Br-cGMP were suppressed by cGMP-dependent protein kinase G (PKG) inhibitor KT5823, indicating that PKG is a downstream signal mediator in the suppression of apoptosis by NO and cGMP. Both SNAP and 8-Br-cGMP induced endogenous Akt activation and Bad phosphorylation, resulting in the inhibition of Bad translocation to mitochondria; these effects were inhibited by KT5823 and the phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 and Wortmannin. Our data suggest that the NO/cGMP pathway suppresses 6-OHDA-induced PC12 cell apoptosis by suppressing the mitochondrial apoptosis signal via PKG/PI3K/Akt-dependent Bad phosphorylation.
Nitrosative stress can prevent or induce apoptosis. It occurs via S-nitrosylation by the interaction of nitric oxide (NO) with the biological thiols of proteins. Cellular redox potential and non-heme iron content determine S-nitrosylation. Apoptotic cell death is inhibited by S-nitrosylation of the redox-sensitive thiol in the catalytic site of caspase family proteases, which play an essential role in the apoptotic signal cascade. Nitrosative stress can also promote apoptosis by the activation of mitochondrial apoptotic pathways, such as the release of cytochrome c, an apoptosis-inducing factor, and endonuclease G from mitochondria, as well as the suppression of NF-kB activity. In this article we reviewed the mechanisms whereby S-nitrosylation and nitrosative stress regulate the apoptotic signal cascade.
Beta-lapachone (β-Lap; 3,4-dihydro-2, 2-dimethyl-2H-naphthol[1, 2-b]pyran-5,6-dione) is a novel anti-cancer drug under phase I/II clinical trials. β-Lap has been demonstrated to cause apoptotic and necrotic death in a variety of human cancer cells in vitro and in vivo. The mechanisms underlying the β-Lap toxicity against cancer cells has been controversial. The most recent view is that β-Lap, which is a quinone compound, undergoes two-electron reduction to hydroquinone form utilizing NAD(P)H or NADH as electron source. This two-electron reduction of β-Lap is mediated by NAD(P)H:quinone oxidoreductase (NQO1), which is known to mediate the reduction of many quinone compounds. The hydroquinone forms of β-Lap then spontaneously oxidizes back to the original oxidized β-Lap, creating futile cycling between the oxidized and reduced forms of β-Lap. It is proposed that the futile recycling between oxidized and reduced forms of β-Lap leads to two distinct cell death pathways. First one is that the two-electron reduced β-Lap is converted first to one-electron reduced β-Lap, i.e., semiquinone β-Lap (SQ)·- causing production of reactive oxygen species (ROS), which then causes apoptotic cell death. The second mechanism is that severe depletion of NAD(P)H and NADH as a result of futile cycling between the quinone and hydroquinone forms of β-Lap causes severe disturbance in cellular metabolism leading to apoptosis and necrosis. The relative importance of the aforementioned two mechanisms, i.e., generation of ROS or depletion of NAD(P)H/NADH, may vary depending on cell type and environment. Importantly, the NQO1 level in cancer cells has been found to be higher than that in normal cells indicating that β-Lap may be preferentially toxic to cancer cells relative to non-cancer cells. The cellular level of NQO1 has been found to be significantly increased by divergent physical and chemical stresses including ionizing radiation. Recent reports clearly demonstrated that β-Lap and ionizing radiation kill cancer cells in a synergistic manner. Indications are that irradiation of cancer cells causes long-lasting elevation of NQO1, thereby sensitizing the cells to β-Lap. In addition, β-Lap has been shown to inhibit the repair of sublethal radiation damage. Treating experimental tumors growing in the legs of mice with irradiation and intraperitoneal injection of β-Lap suppressed the growth of the tumors in a manner more than additive. Collectively, β-Lap is a potentially useful anti-cancer drug, particularly in combination with radiotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.