Although neural network quantization is an imperative technology for the computation and memory efficiency of embedded neural network accelerators, simple post-training quantization incurs unacceptable levels of accuracy degradation on some important models targeting embedded systems, such as MobileNets. While explicit quantization-aware training or re-training after quantization can often reclaim lost accuracy, this is not always possible or convenient. We present an alternative approach to compressing such difficult neural networks, using a novel variant of the ZFP lossy floating-point compression algorithm to compress both model weights and inter-layer activations and demonstrate that it can be efficiently implemented on an embedded FPGA platform. Our ZFP variant, which we call ZFPe, is designed for efficient implementation on embedded accelerators, such as FPGAs, requiring a fraction of chip resources per bandwidth compared to state-of-the-art lossy compression accelerators. ZFPe-compressing the MobileNet V2 model with an 8-bit budget per weight and activation results in significantly higher accuracy compared to 8-bit integer post-training quantization and shows no loss of accuracy, compared to an uncompressed model when given a 12-bit budget per floating-point value. To demonstrate the benefits of our approach, we implement an embedded neural network accelerator on a realistic embedded acceleration platform equipped with the low-power Lattice ECP5-85F FPGA and a 32 MB SDRAM chip. Each ZFPe module consumes less than 6% of LUTs while compressing or decompressing one value per cycle, requiring a fraction of the resources compared to state-of-the-art compression accelerators while completely removing the memory bottleneck of our accelerator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.