The enzyme RNase E (ref. 1) cuts RNA at specific sites within single-stranded segments. The role of adjacent regions of secondary structure in such cleavages is controversial. Here we report that 10-13-nucleotide oligomers lacking any stem-loop but containing the RNase E-cleaved sequence of RNA I, the antisense repressor of replication of ColE1-type plasmids, are cut at the same phosphodiester bond as, and 20 times more efficiently than, RNA I. These findings indicate that, contrary to previous proposals, stem-loops do not serve as entry sites for RNase E, but instead limit cleavage at potentially susceptible sites. Cleavage was reduced further by mutations in a non-adjacent stem-loop, suggesting that distant conformational changes can also affect enzyme access. Modulation of RNase E cleavages by stem-loop regions and to a lesser extent by higher-order structure may explain why this enzyme, which does not have stringent sequence specificity, cleaves complex RNAs at a limited number of sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.