With the growing demand for structural health monitoring system applications, data imaging is an ideal method for performing regular routine maintenance inspections. Image analysis can provide invaluable information about the health conditions of a structure’s existing infrastructure by recording and analyzing exterior damages. Therefore, it is desirable to have an automated approach that reports defects on images reliably and robustly. This paper presents a multivariate analysis approach for images, specifically for assessing substantial damage (such as cracks). The image analysis provides graph representations that are related to the image, such as the histogram. In addition, image-processing techniques such as grayscale are also implemented, which enhance the object’s information present in the image. In addition, this study uses image segmentation and a neural network, for transforming an image to analyze it more easily and as a classifier, respectively. Initially, each concrete structure image is preprocessed to highlight the crack. A neural network is used to calculate and categorize the visual characteristics of each region, and it shows an accuracy for classification of 98%. Experimental results show that thermal image extraction yields better histogram and cumulative distribution function features. The system can promote the development of various thermal image applications, such as nonphysical visual recognition and fault detection analysis.
Buildings and infrastructure in congested metropolitan areas are continuously deteriorating. Various structural flaws such as surface cracks, spalling, delamination, and other defects are found, and keep on progressing. Traditionally, the assessment and inspection is conducted by humans; however, due to human physiology, the assessment limits the accuracy of image evaluation, making it more subjective rather than objective. Thus, in this study, a multivariant defect recognition technique was developed to efficiently assess the various structural health issues of concrete. The image dataset used was comprised of 3650 different types of concrete defects, including surface cracks, delamination, spalling, and non-crack concretes. The proposed scheme of this paper is the development of an automated image-based concrete condition recognition technique to categorize, not only non-defective concrete into defective concrete, but also multivariant defects such as surface cracks, delamination, and spalling. The developed convolution-based model multivariant defect recognition neural network can recognize different types of defects on concretes. The trained model observed a 98.8% defect detection accuracy. In addition, the proposed system can promote the development of various defect detection and recognition methods, which can accelerate the evaluation of the conditions of existing structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.