MicroRNAs (miRs) serve either as oncogenes or tumor-suppressor genes in tumor progression. MicroRNA-20b (miR‑20b) is known to be involved with the oncomirs of several types of cancers. However, in the present study we describe how miR-20b inhibits the proliferation, migration and invasion of bladder cancer EJ cells. In the present study, miR-20b was downregulated in bladder cancer cell lines, and its overexpression resulted in a significant reduction in the proliferation of EJ cells. In addition, via a bioinformatics approach, we identified cell cycle-regulated genes that are the putative targets of miR-20b. The transfection of miR-20b into EJ cells induced G1 phase cell cycle arrest via the decreased expression of cyclin D1, CDK2 and CDK6 without affecting another G1 phase cell cycle regulator, cyclin E. The cell cycle inhibitor p21WAF1 was upregulated in the miR-20b transfected cells. Moreover, the enforced expression of miR-20b resulted in impaired wound-healing migration and invasion in the EJ cells. Based on our target prediction analysis of miRs, we confirmed that miR-20b overexpression strongly impedes MMP-2 expression via suppressive activation of the Sp-1 binding motif, an important transcription factor present in the MMP-2 promoter. Herein, we report the novel concept that miR-20b exerts a suppressive effect on both cell cycle-modulated proliferation and MMP-2-mediated migration and invasion in bladder cancer EJ cells.
The pharmacological effects of Rosa hybrida are well known in the cosmetics industry. However, the role of Rosa hybrida in cardiovascular biology had not previously been investigated, to the best of our knowledge. The aim of the present study was to elucidate the effect of water extract of Rosa hybrida (WERH) on platelet‑derived growth factor (PDGF)-stimulated vascular smooth muscle cells (VSMCs). VSMC proliferation, which was stimulated by PDGF, was inhibited in a non-toxic manner by WERH treatment, which also diminished the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT. Treatment with WERH also induced G1-phase cell cycle arrest, which was due to the decreased expression of cyclins and cyclin-dependent kinases (CDKs), and induced p21WAF1 expression in PDGF-stimulated VSMCs. Moreover, WERH treatment suppressed the migration and invasion of VSMCs stimulated with PDGF. Treatment with WERH abolished the expression of matrix metalloproteinase-9 (MMP-9) and decreased the binding activity of nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and specificity protein 1 (Sp1) motifs in PDGF-stimulated VSMCs. WERH treatment inhibited the proliferation of PDGF‑stimulated VSMCs through p21WAF1‑mediated G1-phase cell cycle arrest, by decreasing the kinase activity of cyclin/CDK complexes. Furthermore, WERH suppressed the PDGF-induced phosphorylation of ERK1/2 and AKT in VSMCs. Finally, treatment with WERH impeded the migration and invasion of VSMCs stimulated by PDGF by downregulating MMP-9 expression and a reduction in NF-κB, AP-1 and Sp1 activity. These results provide new insights into the effects of WERH on PDGF-stimulated VSMCs, and we suggest that WERH has the potential to act as a novel agent for the prevention and/or treatment of vascular diseases.
Esculetin is known to inhibit tumor growth, but its effect in angiogenesis has not been studied. Here, we report the efficacy of esculetin on VEGF-induced angiogenesis. Esculetin treatment inhibited VEGF-induced proliferation and DNA synthesis of HUVECs with no cell toxicity. G1-phase cell-cycle arrest was associated with a decreased expression of cyclins and CDKs via the binding of p27KIP1. Esculetin down-regulated the MMP-2 expression in VEGF-stimulated HUVECs, which suppressed colony tube formation and migration. Esculetin reduced the phosphorylation of VEGFR-2 and the downstream signaling of VEGFR-2, including ERK1/2 and eNOS/Akt pathways. Esculetin suppressed microvessel outgrowth from an aortic ring ex vivo model treated with VEGF, and blocked the VEGF-induced formation of new blood vessels and hemoglobin content in an in vivo Matrigel plug model. Collectively, VEGF-stimulated responses in angiogenesis were inhibited in vitro and in vivo, providing a theoretical basis for effective use against anti-angiogenic therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.