Flow structural characteristics over dimple surfaces located on one wall of a rectangular channel with three different dimple depths ͑␦ / D = 0.1, 0.2, and 0.3͒ are studied experimentally. Reynolds number based on channel height Re H ranges from 2100 to 20 000, and the ratio of channel height to dimple print diameter H / D is 1.0. Presented are instantaneous flow visualization images, spectra of longitudinal velocity fluctuations, vortex pair frequency information, and time-averaged surveys and profiles of different quantities. Regardless of dimple depth, primary vortex pairs are periodically ejected from the central parts of each dimple and exist in conjunction with edge vortex pairs present near the spanwise edges of staggered dimples. As dimple depth increases, larger deficits of total pressure and streamwise velocity are present, along with higher magnitudes of time-averaged streamwise vorticity, vortex circulation, and longitudinal Reynolds normal stress. Bigger and stronger vortices with increased turbulence transport capabilities are thus produced by deeper dimples. Ensemble-averaged power spectral density profiles show that primary vortex pair ejection frequencies range from 7 to 9 Hz, and edge vortex pair oscillation frequencies range from 5 to 7 Hz, with similar distributions as the Reynolds number varies, regardless of dimple depth.
Experimental results from a channel with shallow dimples placed on one wall are given for Reynolds numbers based on channel height from 3,700 to 20,000, levels of longitudinal turbulence intensity from 3% to 11% (at the entrance of the channel test section), and a ratio of air inlet stagnation temperature to surface temperature of approximately 0.94. The ratio of dimple depth to dimple print diameter δ∕D is 0.1, and the ratio of channel height to dimple print diameter H∕D is 1.00. The data presented include friction factors, local Nusselt numbers, spatially averaged Nusselt numbers, a number of time-averaged flow structural characteristics, flow visualization results, and spectra of longitudinal velocity fluctuations which, at a Reynolds number of 20,000, show a primary vortex shedding frequency of 8.0Hz and a dimple edge vortex pair oscillation frequency of approximately 6.5Hz. The local flow structure shows some qualitative similarity to characteristics measured with deeper dimples (δ∕D of 0.2 and 0.3), with smaller quantitative changes from the dimples as δ∕D decreases. A similar conclusion is reached regarding qualitative and quantitative variations of local Nusselt number ratio data, which show that the highest local values are present within the downstream portions of dimples, as well as near dimple spanwise and downstream edges. Local and spatially averaged Nusselt number ratios sometimes change by small amounts as the channel inlet turbulence intensity level is altered, whereas friction factor ratios increase somewhat at the channel inlet turbulence intensity level increases. These changes to local Nusselt number data (with changing turbulence intensity level) are present at the same locations where the vortex pairs appear to originate, where they have the greatest influences on local flow and heat transfer behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.