Endogenously produced hydrogen sulfide was proposed to be an underlying mechanism of lifespan extension via methionine restriction. However, hydrogen sulfide regulation and its beneficial effects via methionine restriction remain elusive. Here, we identified the genes required to increase hydrogen sulfide production under methionine restriction condition using genome-wide high-throughput screening in yeast strains with single-gene deletions. Sulfate assimilation-related genes, such as
MET1
,
MET3
,
MET5
, and
MET10
, were found to be particularly crucial for hydrogen sulfide production. Interestingly, methionine restriction failed to increase hydrogen sulfide production in mutant strains; however, it successfully extended chronological lifespan and reduced reactive oxygen species levels. Altogether, our observations suggested that increased hydrogen sulfide production via methionine restriction is not the mechanism underlying extended yeast lifespan, even though increased hydrogen sulfide production occurred simultaneously with yeast lifespan extension under methionine restriction condition.
Methionine oxidation is involved in regulating the protein activity and often leads to protein malfunction. However, tools for quantitative analyses of protein-specific methionine oxidation are currently unavailable. In this work, we developed a biological sensor that quantifies oxidized methionine in the form of methionine-R-sulfoxide in target proteins. The biosensor "tpMe-tROG" consists of methionine sulfoxide reductase B (MsrB), circularly permuted yellow fluorescent protein (cpYFP), thioredoxin, and protein G. Protein G binds to the constant region of antibodies against target proteins, specifically capturing them. Then, MsrB reduces the oxidized methionine in these proteins, leading to cpYFP fluorescence changes. We assessed this biosensor for quantitative analysis of methionine-R-sulfoxide in various proteins, such as calmodulin, IDLO, LegP, Sacde, and actin. We further developed an immunosorbent assay using the biosensor to quantify methionine oxidation in specific proteins such as calmodulin in animal tissues. The biosensor-linked immunosorbent assay proves to be an indispensable tool for detecting methionine oxidation in a protein-specific manner. This is a versatile tool for studying the redox biology of methionine oxidation in proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.