There have been frequent cases of civil complaints and disputes in relation to floor impact noises over the years. To solve these issues, a substantial amount of sound resilient material is installed between the concrete slab and the foamed concrete during construction. A new place-type resilient material is made from cement, silica powder, sodium sulfate, expanded-polystyrene, anhydrite, fly ash, and acrylic polymer emulsion resin. Its physical characteristics such as density, compressive strength, dynamic stiffness, and remanent strain are analyzed to assess the acoustic performance of the material. The experimental results showed the density and the dynamic stiffness of the proposed resilient material is increased with proportional to the use of cement and silica powder due to the high contents of the raw materials. The remanent strain, related to the serviceability of a structure, is found to be inversely proportional to the density and strength. The amount of reduction in the heavyweight impact noise is significant in a material with high density, high strength, and low remanent strain. Finally, specimen no. R4, having the reduction level of 3 dB for impact ball and 1 dB for bang machine in the single number quantity level, respectively, is the best product to obtain overall acoustic performance.
CO2 emitted from building materials and the construction materials industry has reached about 67 million tons. Controls on the use of consumed fossil fuels and the reduction of emission gases are essential for the reduction of CO2 in the construction area as one reduces the second and third curing to emit CO2 in the construction materials industry. In this study, a new curing method was addressed by using a low energy curing admixture (LA) in order to exclude autoclave curing. The new curing method was applied to make panels. Then, its physical properties, depending on the mixed amount of fiber, type of fiber and mixed ratio of fiber, were observed. The type of fiber did not appear to be a main factor that affected strength, while the LA mixing ratio and mixing amount of fiber appeared to be major factors affecting the strength. Applying the proposed new curing method can reduce carbon and restrain the use of fossil fuels through a reduction of the second and third curing processes, which emit CO2 in the construction materials industry. Therefore, it will be helpful to reduce global warming.
In Korea, in the event of performing fire-proofing work on concrete columns with strength of 50 MPa and above, an assessment of the fire-resistance performance must be carried out in accordance with the Ministry of Land, Transport and Maritime Affairs Notice 2008-334 'Standards for Management of Fire-resistance Performance of High-strength Concrete Columns and Beams.' However, the current standards only prescribe the need to check whether the testing report is submitted during the performance of fire-proofing work. This may pose difficulties in managing the fire-resistance performance in cases where it is impossible to identify whether such work has been done with a naked eye as is the case of the fire mixing method. Thus, in this study, three types of structurally reinforced specimens were fabricated for a fire-resistance performance test in order to propose a structural reinforcement technique that would facilitate the identification of the technique implemented in the field. The structural reinforcement techniques employed in this study were the method of increasing the amount of reinforcement and cross section in accordance with the Euro Code, the metal lath reinforcement method, and the method of increasing the amount of horizontal reinforcement. The strength of concrete used in the experiment was 70 MPa, the standard for design strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.