Antibody-drug conjugates (ADC) target cytotoxic drugs to antigen-positive cells for treating cancer. After internalization, ADCs with noncleavable linkers are catabolized to amino acidlinker-warheads within the lysosome, which then enter the cytoplasm by an unknown mechanism. We hypothesized that a lysosomal transporter was responsible for delivering noncleavable ADC catabolites into the cytoplasm. To identify candidate transporters, we performed a phenotypic shRNA screen with an anti-CD70 maytansine-based ADC. This screen revealed the lysosomal membrane protein SLC46A3, the genetic attenuation of which inhibited the potency of multiple noncleavable antibodymaytansine ADCs, including ado-trastuzumab emtansine. In contrast, the potencies of noncleavable ADCs carrying the structurally distinct monomethyl auristatin F were unaffected by SLC46A3 attenuation. Structure-activity experiments suggested that maytansine is a substrate for SLC46A3. Notably, SLC46A3 silencing led to relative increases in catabolite concentrations in the lysosome. Taken together, our results establish SLC46A3 as a direct transporter of maytansine-based catabolites from the lysosome to the cytoplasm, prompting further investigation of SLC46A3 as a predictive response marker in breast cancer specimens. Cancer Res; 75(24); 5329-40. Ó2015 AACR.
Chimeric antigen receptor (CAR) T-cell therapy is a promising treatment for patients with CD19+ B-cell malignancies. Combination strategies that improve CAR T-cell potency, limit tumor environment–mediated immune dysfunction, and directly reduce tumor burden may increase the potential for durable clinical benefit of CAR T-cell therapy. Lisocabtagene maraleucel (liso-cel) is a product therapy candidate being tested in patients with relapsed/refractory non-Hodgkin lymphoma or chronic lymphocytic leukemia. This study assessed the in vitro and in vivo functionality of CAR T cells transduced to express the anti-CD19 CAR of liso-cel in combination with ibrutinib or acalabrutinib. In prolonged stimulation assays, the presence of ibrutinib or acalabrutinib improved the CAR T-cell effector function. RNA-Seq analysis and surface marker profiling of these CAR T cells treated with ibrutinib but not acalabrutinib revealed gene expression changes consistent with skewing toward a memory-like, type 1 T-helper, Bruton tyrosine kinase phenotype. Ibrutinib or acalabrutinib improved CD19+ tumor clearance and prolonged survival of tumor-bearing mice when used in combination with CAR T cells. A combination of the defined cell product therapy candidate, liso-cel, with ibrutinib or acalabrutinib is an attractive approach that may potentiate the promising clinical responses already achieved in CD19+ B-cell malignancies with each of these single agents.
Despite an intriguing cell biology and the suggestion of a role in pathophysiological responses, the mechanism of action of such lipid phosphoric acid mediators as lysophosphatidic acid (LPA) remains obscure, in part because of an underdeveloped medicinal chemistry. We report now the agonist activity of a synthetic phospholipid in which the glycerol backbone of LPA is replaced by L-serine. Like LPA, the L-serine-based lipid mobilizes calcium and inhibits activation of adenylyl cyclase in the human breast cancer cell line MDA MB231. Treatment with LPA desensitizes MDA MB231 cells to subsequent application of the L-serine compound; when the order of application is reversed, however, the L-serine compound does not prevent calcium mobilization by LPA, which might indicate the existence of two LPA receptors in these cells. The analogous D-serine-based phospholipid was distinctly less potent than the L-isomer in those assays; this finding demonstrates stereoselectivity by an LPA receptor. Unlike LPA, the L-serine-based lipid does not evoke a chloride conductance in Xenopus laevis oocytes, but injection of poly(A) ϩ RNA from HEK 293 cells confers this phenotype on the oocyte. The latter result has practical importance in that it allows use of the frog oocyte for expression cloning of an LPA receptor DNA, an assay system made problematic by the oocyte's strong endogenous response to LPA.
Two human isoforms of membrane associated phosphatidic acid phosphatase have been described , and both enzymes have been shown to have broad substrate specificity and wide tissue distribution [Kai et al., J. Biol. Chem. 272 (1997) 24572^24578]. With this report we describe a third isoform, PAP-2c, that we found by searching the database of expressed sequence tags (dbEST) with PAP-2a and PAP-2b sequences. Key structural features described previously in PAP2a and -2b, including the glycosylation site, putative transmembrane domains, and the proposed catalytic site, are conserved in the novel phosphatase. The kinetics of the three enzymes were compared using as substrates phosphatidic acid, lysophosphatidic acid, and N-oleoyl ethanolamine phosphatidic acid. K m values for each of the substrates, respectively, were (in W WM) 170, 116; 110, 56; 340, 138. Expression of PAP-2c mRNA is more restricted than the two previously described isoforms.z 1998 Federation of European Biochemical Societies.
Advances in the fields of cancer initiating cells and high-throughput in vivo shRNA screens have highlighted a need to observe the growth of tumor cells in cancer models at the clonal level. While in vivo cancer cell growth heterogeneity in xenografts has been described, it has yet to be measured. Here, we tested an approach to quantify the clonal growth heterogeneity of cancer cells in subcutaneous xenograft mouse models. Using a high-throughput sequencing method, we followed the fate in vitro and in vivo of ten thousand HCT-116 cells individually tagged with a unique barcode delivered by lentiviral transduction. While growth in vitro was less homogeneous than anticipated, we still find that 95% of the final cells derived from 80% of the original cells. In xenografts, however, 95% of the retrieved barcoded cells originated from only 6% of the initially injected cells, an effect we term “clonal dominance”. We observed this clonal dominance in two additional xenograft models (MDA-MB-468 and A2780cis) and in two different host strains (NSG and Nude). By precisely and reproducibly quantifying clonal cancer cell growth in vivo, we find that a small subset of clones accounts for the vast majority of the descendant cells, even with HCT-116, a cell line reported to lack a tumor-initiating compartment. The stochastic in vivo selection process we describe has important implications for the fields of in vivo shRNA screening and tumor initiating cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.