IMPORTANCEMillions of clinicians rely daily on automated preliminary electrocardiogram (ECG) interpretation. Critical comparisons of machine learning-based automated analysis against clinically accepted standards of care are lacking. OBJECTIVE To use readily available 12-lead ECG data to train and apply an explainability technique to a convolutional neural network (CNN) that achieves high performance against clinical standards of care.
DESIGN, SETTING, AND PARTICIPANTSThis cross-sectional study was conducted using data from January 1, 2003, to December 31, 2018. Data were obtained in a commonly available 12-lead ECG format from a single-center tertiary care institution. All patients aged 18 years or older who received ECGs at the
Exoplanets in protoplanetary disks cause localized deviations from Keplerian velocity in channel maps of molecular line emission. Current methods of characterizing these deviations are time consuming,and there is no unified standard approach. We demonstrate that machine learning can quickly and accurately detect the presence of planets. We train our model on synthetic images generated from simulations and apply it to real observations to identify forming planets in real systems. Machine-learning methods, based on computer vision, are not only capable of correctly identifying the presence of one or more planets, but they can also correctly constrain the location of those planets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.