The NS1 protein is known to suppress immune responses in influenza virus-infected hosts. However, the role of NS1 in apoptosis in infected cells is disputed. In this study, through the use of a mutant A/pheasant/California/2373/1998 (H9N2) avian influenza virus (AIV) with a truncated NS1, we have demonstrated that a functional NS1 protein suppresses the induction of interferons in chicken macrophages. However, NS1 appeared to be irrelevant to the regulation of cytokines interleukin (IL)-1β and IL-6, indicating that distinct mechanisms may be employed in the regulation of antiviral and proinflammatory cytokines in chicken immune cells. Our study also showed that this H9N2 AIV induced apoptosis extrinsically through the Fas/Fas ligand (FasL)-mediated pathway. We found that NS1 suppressed the apoptotic process through suppression of the induction of FasL, but not tumour necrosis factor-α or TNF-related apoptosis-inducing ligand. Furthermore, our data indicated that the disruption of a potential binding site for the p85β subunit of phosphoinositide 3-kinase in the carboxyl terminus of NS1, while having no effect on the regulation of IFN induction, may contribute to the suppression of Fas/FasL-mediated apoptosis. Therefore, suppression of Fas/FasL-mediated apoptosis by NS1 is one of the critical mechanisms necessary to increase infectivity in AIV-infected chicken macrophages.
In a previous study, we found clear differences in pathogenicity and response to vaccination against H5N1 highly pathogenic avian influenza (HPAI; HA dade 2.3.4) between Pekin (Anas platyrhynchos var. domestica) and Muscovy (Cairina moschata) ducks vaccinated using a commercial inactivated vaccine (Re-1). The objective of the present study was to further investigate the pathogenicity of H5N1 HPAI viruses in different species of ducks by examining clinical signs and innate immune responses to infection with a different strain of H5N1 HPAI virus (HA clade 1) in two domestic ducks, Pekin and Muscovy, and one wild-type duck, mallard (Anas platyrhynchos). Protection conferred by vaccination using the Re-1 vaccine against infection with this virus was also compared between Pekin and Muscovy ducks. Differences in pathogenicity were observed among the virus-infected ducks, as the Muscovy ducks died 2 days earlier than did the Pekin and mallard ducks, and they presented more-severe neurologic signs. Conversely, the Pekin and mallard ducks had significantly higher body temperatures at 2 days postinfection (dpi) than did the Muscovy ducks, indicating possible differences in innate immune responses. However, similar expression of innate immune-related genes was found in the spleens of virus-infected ducks at this time point. In all three duck species, there was up-regulation of IFN-alpha, IFN-gamma, IL-6, CCL19, RIG-I, and MHC class I and down-regulation of MHC class II, but variable expression of IL-18 and TLR7. As in our previous study, vaccinated Muscovy ducks showed less protection against virus infection than did Pekin ducks, as evidenced by the higher mortality and higher number of Muscovy ducks shedding virus when compared to Pekin ducks. In conclusion, infection with an H5N1 HPAI virus produced a systemic infection with high mortality in all three duck species; however, the disease was more severe in Muscovy ducks, which also had a poor response to vaccination. The differences in response to virus infection could not be explained by differences in the innate immune responses between the different types of ducks when examined at 2 days dpi, and earlier time points need to be evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.