Dense surface models can be used to analyze 3D facial morphology by establishing a correspondence of thousands of points across each 3D face image. The models provide dramatic visualizations of 3D face-shape variation with potential for training physicians to recognize the key components of particular syndromes. We demonstrate their use to visualize and recognize shape differences in a collection of 3D face images that includes 280 controls (2 weeks to 56 years of age), 90 individuals with Noonan syndrome (NS) (7 months to 56 years), and 60 individuals with velo-cardio-facial syndrome (VCFS; 3 to 17 years of age). Ten-fold cross-validation testing of discrimination between the three groups was carried out on unseen test examples using five pattern recognition algorithms (nearest mean, C5.0 decision trees, neural networks, logistic regression, and support vector machines). For discriminating between individuals with NS and controls, the best average sensitivity and specificity levels were 92 and 93% for children, 83 and 94% for adults, and 88 and 94% for the children and adults combined. For individuals with VCFS and controls, the best results were 83 and 92%. In a comparison of individuals with NS and individuals with VCFS, a correct identification rate of 95% was achieved for both syndromes. This article contains supplementary material, which may be viewed at the American Journal of Medical Genetics website at http://www.interscience.wiley.com/jpages/0148-7299/suppmat/index.html.
Sub-cellular localisation of proteins is an essential post-translational regulatory mechanism that can be assayed using high-throughput mass spectrometry (MS). These MS-based spatial proteomics experiments enable us to pinpoint the sub-cellular distribution of thousands of proteins in a specific system under controlled conditions. Recent advances in high-throughput MS methods have yielded a plethora of experimental spatial proteomics data for the cell biology community. Yet, there are many third-party data sources, such as immunofluorescence microscopy or protein annotations and sequences, which represent a rich and vast source of complementary information. We present a unique transfer learning classification framework that utilises a nearest-neighbour or support vector machine system, to integrate heterogeneous data sources to considerably improve on the quantity and quality of sub-cellular protein assignment. We demonstrate the utility of our algorithms through evaluation of five experimental datasets, from four different species in conjunction with four different auxiliary data sources to classify proteins to tens of sub-cellular compartments with high generalisation accuracy. We further apply the method to an experiment on pluripotent mouse embryonic stem cells to classify a set of previously unknown proteins, and validate our findings against a recent high resolution map of the mouse stem cell proteome. The methodology is distributed as part of the open-source Bioconductor suite for spatial proteomics data analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.