Strengthening EMS preparedness in response to suspected or confirmed HID cases may not only improve patient outcomes, but also worker and community safety.
Forest trees are valued sources of pulp, timber and biofuels, and serve a role in carbon sequestration, biodiversity maintenance and watershed stability. Examining the relationships among genetic, phenotypic and environmental factors for these species provides insight on the areas of concern for breeders and researchers alike. The TreeGenes database is a web-based repository that is home to 1790 tree species and over 1500 registered users. The database provides a curated archive for high-throughput genomics, including reference genomes, transcriptomes, genetic maps and variant data. These resources are paired with extensive phenotypic information and environmental layers. TreeGenes recently migrated to Tripal, an integrated and open-source database schema and content management system. This migration enabled developments focused on data exchange, data transfer and improved analytical capacity, as well as providing TreeGenes the opportunity to communicate with the following partner databases: Hardwood Genomics Web, Genome Database for Rosaceae, and the Citrus Genome Database. Recent development in TreeGenes has focused on coordinating information for georeferenced accessions, including metadata acquisition and ontological frameworks, to improve integration across studies combining genetic, phenotypic and environmental data. This focus was paired with the development of tools to enable comparative genomics and data visualization. By combining advanced data importers, relevant metadata standards and integrated analytical frameworks, TreeGenes provides a platform for researchers to store, submit and analyze forest tree data.
Despite tremendous advancements in high throughput sequencing, the vast majority of tree genomes, and in particular, forest trees, remain elusive. Although primary databases store genetic resources for just over 2,000 forest tree species, these are largely focused on sequence storage, basic genome assemblies, and functional assignment through existing pipelines. The tree databases reviewed here serve as secondary repositories for community data. They vary in their focal species, the data they curate, and the analytics provided, but they are united in moving toward a goal of centralizing both data access and analysis. They provide frameworks to view and update annotations for complex genomes, interrogate systems level expression profiles, curate data for comparative genomics, and perform real-time analysis with genotype and phenotype data. The organism databases of today are no longer simply catalogs or containers of genetic information. These repositories represent integrated cyberinfrastructure that support cross-site queries and analysis in web-based environments. These resources are striving to integrate across diverse experimental designs, sequence types, and related measures through ontologies, community standards, and web services. Efficient, simple, and robust platforms that enhance the data generated by the research community, contribute to improving forest health and productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.