The oligometastasis hypothesis suggests a spectrum of metastatic virulence where some metastases are limited in extent and curable with focal therapies. A subset of patients with metastatic colorectal cancer achieves prolonged survival after resection of liver metastases consistent with oligometastasis. Here we define three robust subtypes of de novo colorectal liver metastasis through integrative molecular analysis. Patients with metastases exhibiting MSI-independent immune activation experience the most favorable survival. Subtypes with adverse outcomes demonstrate VEGFA amplification in concert with (i) stromal, mesenchymal, and angiogenic signatures, or (ii) exclusive NOTCH1 and PIK3C2B mutations with E2F/MYC activation. Molecular subtypes complement clinical risk stratification to distinguish low-risk, intermediate-risk, and high-risk patients with 10-year overall survivals of 94%, 45%, and 19%, respectively. Our findings provide a framework for integrated classification and treatment of metastasis and support the biological basis of curable oligometastatic colorectal cancer. These concepts may be applicable to many patients with metastatic cancer.
The first cohort of surgical interns to train under the new regulations report decreased continuity with patients, coordination of patient care, and time spent in the operating room. Furthermore, suboptimal quality of life, burnout, and thoughts of giving up surgery were common, even under the new paradigm of reduced work hours.
Background:The CXCL10/CXCR3 signalling mediates paracrine interactions between tumour and stromal cells that govern leukocyte trafficking and angiogenesis. Emerging data implicate noncanonical CXCL10/CXCR3 signalling in tumourigenesis and metastasis. However, little is known regarding the role for autocrine CXCL10/CXCR3 signalling in regulating the metastatic potential of individual tumour clones.Methods:We performed transcriptomic and cytokine profiling to characterise the functions of CXCL10 and CXCR3 in tumour cells with different metastatic abilities. We modulated the expression of the CXCL10/CXCR3 pathway using shRNA-mediated silencing in both in vitro and in vivo models of B16F1 melanoma. In addition, we examined the expression of CXCL10 and CXCR3 and their associations with clinical outcomes in clinical data sets derived from over 670 patients with melanoma and colon and renal cell carcinomas.Results:We identified a critical role for autocrine CXCL10/CXCR3 signalling in promoting tumour cell growth, motility and metastasis. Analysis of publicly available clinical data sets demonstrated that coexpression of CXCL10 and CXCR3 predicted an increased metastatic potential and was associated with early metastatic disease progression and poor overall survival.Conclusion:These findings support the potential for CXCL10/CXCR3 coexpression as a predictor of metastatic recurrence and point towards a role for targeting of this oncogenic axis in the treatment of metastatic disease.
Oligometastasis is a clinically distinct subset of metastasis characterized by a limited number of metastases potentially curable with localized therapies. We analyzed pathways targeted by microRNAs over-expressed in clinical oligometastasis samples and identified suppression of cellular adhesion, invasion, and motility pathways in association with the oligometastatic phenotype. We identified miR-127-5p, miR-544a, and miR-655-3p encoded in the 14q32 microRNA cluster as co-regulators of multiple metastatic pathways through repression of shared target genes. These microRNAs suppressed cellular adhesion and invasion and inhibited metastasis development in an animal model of breast cancer lung colonization. Target genes, including TGFBR2 and ROCK2, were key mediators of these effects. Understanding the role of microRNAs expressed in oligometastases may lead to improved identification of and interventions for patients with curable metastatic disease, as well as an improved understanding of the molecular basis of this unique clinical entity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.