To help understand and determine the driver of jovian auroral X‐rays, we present the first statistical study to focus on the morphology and dynamics of the jovian northern hot spot (NHS) using Chandra data. The catalog we explore dates from December 18, 2000 up to and including September 8, 2019. Using a numerical criterion, we characterize the typical and extreme behavior of the concentrated NHS emissions across the catalog. The mean power of the NHS is found to be 1.91 GW with a maximum brightness of 2.02 Rayleighs (R), representing by far the brightest parts of the jovian X‐ray spectrum. We report a statistically significant region of emissions at the NHS center which is always present, the averaged hot spot nucleus (AHSNuc), with mean power of 0.57 GW and inferred average brightness of ∼1.2 R. We use a flux equivalence mapping model to link this distinct region of X‐ray output to a likely source location and find that the majority of mappable NHS photons emanate from the pre‐dusk to pre‐midnight sector, coincident with the dusk flank boundary. A smaller cluster maps to the noon magnetopause boundary, dominated by the AHSNuc, suggesting that there may be multiple drivers of X‐ray emissions. On application of timing analysis techniques (Rayleigh, Monte Carlo, Jackknife), we identify several instances of statistically significant quasi‐periodic oscillations (QPOs) in the NHS photons ranging from ∼2.3 to 36.4 min, suggesting possible links with ultra‐low frequency activity on the magnetopause boundary (e.g., dayside reconnection, Kelvin‐Helmholtz instabilities).
We present a statistical study of Jupiter’s disk X‐ray emissions using 19 years of Chandra X‐Ray Observatory (CXO) observations. Previous work has suggested that these emissions are consistent with solar X‐rays elastically scattered from Jupiter’s upper atmosphere. We showcase a new pulse invariant (PI) filtering method that minimizes instrumental effects which may produce unphysical trends in photon counts across the nearly two‐decade span of the observations. We compare the CXO results with solar X‐ray flux data from the Geostationary Operational Environmental Satellites X‐ray Sensor for the wavelength band 1–8 Å (long channel), to quantify the correlation between solar activity and Jovian disk counts. We find a statistically significant Pearson’s Correlation Coefficient of 0.9, which confirms that emitted Jovian disk X‐rays are predominantly governed by solar activity. We also utilize the high spatial resolution of the High Resolution Camera Instrument on‐board the CXO to map the disk photons to their positions on Jupiter’s surface. Voronoi tessellation diagrams were constructed with the Juno Reference Model through Perijove 9 internal field model overlaid to identify any spatial preference of equatorial photons. After accounting for area and scattering across the curved surface of the planet, we find a preference of Jovian disk emission at 2–3.5 Gauss surface magnetic field strength. This suggests that a portion of the disk X‐rays may be linked to processes other than solar scattering: the spatial preference associated with magnetic field strength may imply increased precipitation from the radiation belts, as previously postulated.
We present 14 simultaneous Chandra X‐ray Observatory (CXO)‐Hubble Space Telescope (HST) observations of Jupiter's Northern X‐ray and ultraviolet (UV) aurorae from 2016 to 2019. Despite the variety of dynamic UV and X‐ray auroral structures, one region is conspicuous by its persistent absence of emission: the dark polar region (DPR). Previous HST observations have shown that very little UV emission is produced by the DPR. We find that the DPR also produces very few X‐ray photons. For all 14 observations, the low level of X‐ray emission from the DPR is consistent (within 2‐standard deviations) with scattered solar emission and/or photons spread by Chandra's Point Spread Function from known X‐ray‐bright regions. We therefore conclude that for these 14 observations the DPR produced no statistically significant detectable X‐ray signature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.