Background Sleep disorders are common in people with intellectual disability (ID) and autism, with growing evidence of diverse sleep profiles across ID associated genetic syndromes. Documenting the prevalence and profile of specific sleep disorders in syndromes will quantify syndrome-driven ‘risk’, inform prognosis and enhance understanding of aetiology of sleep disorders. Method Following PRISMA guidelines for meta-analysis, we searched Ovid PsycINFO, Ovid MEDLINE, Ovid Embase, Web of Science and PubMed Central with use of syndrome-specific keywords and 60 sleep-related search terms. We screened and extracted papers that reported sleep disorder prevalence data for five or more individuals within a genetic syndrome, and applied quality criteria to produce a quality-effects prevalence model of six types of sleep disorder across nineteen syndromes. Relative risk estimates were calculated for the prevalence of each sleep disorder in each syndrome. Results Two hundred and seventy three papers were identified, generating 463 prevalence estimates for Angelman, CHARGE, Cornelia de Lange, Down, fragile X, Prader–Willi, Rett, Smith–Magenis and Williams syndromes, mucopolysaccharidoses (MPS disorders), neurofibromatosis and tuberous sclerosis complex. Prevalence estimates were higher in genetic syndromes than published equivalents for typically developing individuals, with few exceptions. Between-syndrome differences for some disorders were evident; sleep-disordered breathing was most prevalent in MPS disorders (72–77%), while excessive daytime sleepiness was highest in Smith–Magenis syndrome (60%). Conversely, insomnia, which was reported at a higher rate than TD estimates in all syndromes except fragile X, was not associated with specific genetic risk. This suggests insomnia could emerge because of the individual’s environment or associated developmental delay, rather than any specific genetic syndromes. Limitations Due to the broad scope of the meta-analysis, only syndromes previously identified as reporting preliminary sleep research were included. Other syndromes may also experience elevated prevalence rates of specific types of sleep disorder. Only English language papers were included. Conclusions Differing prevalence rates between types of sleep disorder suggest differing causal mechanisms, such as cranio-facial morphology in Down and Prader–Willi syndromes and the build-up of mucopolysaccharides in MPS disorders. Priorities for clinical assessment and intervention for sleep disorders are discussed.
Patients with Prolonged Disorders of Consciousness (PDOC) have catastrophic disabilities and very complex needs for care. Therapeutic options are very limited, and patients often show little functional improvement over time. Neuroimaging studies have demonstrated that a significant number of PDOC patients retain a high level of cognitive functioning, and in some cases even awareness, and are simply unable to show this with their external behavior - a condition known as cognitive-motor dissociation (CMD). Despite vast implications for diagnosis, the discovery of covert cognition in PDOC patients is not typically associated with a more favorable prognosis, and the majority of patients will remain in a permanent state of low responsiveness. Recently, transcranial direct current stimulation (tDCS) has attracted attention as a potential therapeutic tool in PDOC. Research to date suggests that tDCS can lead to clinical improvements in patients with a minimally conscious state (MCS), especially when administered over multiple sessions. While promising, the outcomes of these studies have been highly inconsistent, partially due to small sample sizes, heterogeneous methodologies (in terms of both tDCS parameters and outcome measures), and limitations related to electrode placement and heterogeneity of brain damage inherent to PDOC. In addition, we argue that neuroimaging and electrophysiological assessments may serve as more sensitive biomarkers to identify changes after tDCS that are not yet apparent behaviorally. Finally, given the evidence that concurrent brain stimulation and physical therapy can enhance motor rehabilitation, we argue that future studies should focus on the integration of tDCS with conventional rehabilitation programmes from the subacute phase of care onwards, to ascertain whether any synergies exist.
Mind-wandering is associated with switching our attention to internally directed thoughts and is by definition an intrinsic, self-generated cognitive function. Interestingly, previous research showed that it may be possible to modulate its propensity externally, with transcranial direct current stimulation (tDCS) targeting different regions in the default mode and executive control networks (ECNs). However, these studies used highly heterogeneous montages (targeting the dorsolateral prefrontal cortex (DLPFC), the right inferior parietal lobule (IPL), or both concurrently), often showed contradicting results, and in many cases failed to replicate. Our study aimed to establish whether tDCS of the default mode network (DMN), via targeting the right IPL alone, could modulate mind-wandering propensity using a within-subjects double-blind, counterbalanced design. Participants completed sustained attention to response task (SART) interspersed with thought-probes to capture their subjective reports of mind-wandering before and after receiving anodal, cathodal, or sham tDCS over the right IPL (with the reference over the left cheek). We found evidence for the lack of an effect of stimulation on subjective reports of mind-wandering (JZS-BF 01 = 5.19), as well as on performance on the SART task (errors (JZS-BF 01 = 6.79) and reaction time (JZS-BF 01 = 5.94). Overall, we failed to replicate previous reports of successful modulations of mind-wandering propensity with tDCS over the IPL, instead of providing evidence in support of the lack of an effect. This and other recent unsuccessful replications call into question whether it is indeed possible to externally modulate spontaneous or self-generated cognitive processes.
Recent research indicates prolonged disorders of consciousness (PDOC) result from structural and functional impairments to key cortical and subcortical networks, including the default mode network (DMN) and the anterior forebrain mesocircuit (AFM). However, the specific mechanisms which underpin such impairments remain unknown. It is known that disruptions in the striatal-pallidal pathway can result in the over inhibition of the thalamus and lack of excitation to the cortex that characterizes PDOC. Here, we used spectral dynamic causal modelling and parametric empirical Bayes on rs-fMRI data to assess whether DMN changes in PDOC are caused by disruptions in the AFM. PDOC patients displayed overall reduced coupling within the AFM, and specifically, decreased self-inhibition of the striatum, paired with reduced coupling from striatum to thalamus. This led to loss of inhibition from AFM to DMN, mostly driven by posterior areas including the precuneus and inferior parietal cortex. In turn, the DMN showed disruptions in self-inhibition of the precuneus and medial prefrontal cortex. Our results provide support for the anterior mesocircuit model at the subcortical level but highlight an inhibitory role for the AFM over the DMN, which is disrupted in PDOC.
There is conflicting evidence over the ability to modulate mind-wandering propensity with anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (prefrontal tDCS). Here, 20 participants received 20-min of active and sham prefrontal tDCS while in the MRI scanner, in two separate sessions (counterbalanced). In each session, they completed two runs of a sustained attention to response task (before and during tDCS), which included probes recording subjective responses of mind-wandering. We assessed the effects of tDCS on behavioural responses as well as functional and effective dynamics, via dynamic functional network connectivity (dFNC) and dynamic causal modelling analyses over regions of the default mode, salience and executive control networks. Behavioural results provided substantial evidence in support of no effect of tDCS on task performance nor mind-wandering propensity. Similarly, we found no effect of tDCS on frequency (how often) or dwell time (time spent) of underlying brain states nor effective connectivity. Overall, our results suggest that prefrontal tDCS is unable to modulate mind-wandering propensity or influence underlying brain function. This expands previous behavioural replication failures in suggesting that prefrontal tDCS may not lead to even subtle (i.e., under a behavioural threshold) changes in brain activity during self-generated cognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.