Moths recognize a wide range of volatile compounds, which they use to locate mates, food sources, and oviposition sites. These compounds are recognized by odorant receptors (OR) located within the dendritic membrane of sensory neurons that extend into the lymph of sensilla, covering the surface of insect antennae. We have identified 3 genes encoding ORs from the tortricid moth, Epiphyas postvittana, a pest of horticulture. Like Drosophila melanogaster ORs, they contain 7 transmembrane helices with an intracellular N-terminus, an orientation in the plasma membrane opposite to that of classical GPCRs. EpOR2 is orthologous to the coreceptor Or83b from D. melanogaster. EpOR1 and EpOR3 both recognize a range of terpenoids and benzoates produced by plants. Of the compounds tested, EpOR1 shows the best sensitivity to methyl salicylate [EC(50) = 1.8 x 10(-12) M], a common constituent of floral scents and an important signaling compound produced by plants when under attack from insects and pathogens. EpOR3 best recognizes the monoterpene citral to low concentrations [EC(50) = 1.1 x 10(-13) M]. Citral produces the largest amplitude electrophysiological responses in E. postvittana antennae and elicits repellent activity against ovipositing female moths. Orthologues of EpOR3 were found across 6 families within the Lepidoptera, suggesting that the ability to recognize citral may underpin an important behavior.
Toxin complex (Tc) proteins are a class of bacterial protein toxins that form large, multisubunit complexes. Comprising TcA, B, and C components, they are of great interest because many exhibit potent insecticidal activity. Here we report the structure of a novel Tc, Yen-Tc, isolated from the bacterium Yersinia entomophaga MH96, which differs from the majority of bacterially derived Tcs in that it exhibits oral activity toward a broad range of insect pests, including the diamondback moth ( Plutella xylostella ). We have determined the structure of the Yen-Tc using single particle electron microscopy and studied its mechanism of toxicity by comparative analyses of two variants of the complex exhibiting different toxicity profiles. We show that the A subunits form the basis of a fivefold symmetric assembly that differs substantially in structure and subunit arrangement from its most well characterized homologue, the Xenorhabdus nematophila toxin XptA1. Histopathological and quantitative dose response analyses identify the B and C subunits, which map to a single, surface-accessible region of the structure, as the sole determinants of toxicity. Finally, we show that the assembled Yen-Tc has endochitinase activity and attribute this to putative chitinase subunits that decorate the surface of the TcA scaffold, an observation that may explain the oral toxicity associated with the complex.
Cellulose and hemicelluloses are the most prevalent sources of carbon in nature. Currently many approaches employ micro‐organisms and their enzyme products to degrade plant feedstocks for production of bioenergy. Scarab larvae are one such model. They consume celluloses from a variety of sources including plant roots, soil organic matter and decaying wood, and are able to extract nutrients and energy from these sources. In this paper, we review the physicochemical properties of the scarab larval gut, the diversity and digestive role that microflora play in the scarab gut and discuss the potential for applying these digestive processes in bioreactors for improving bio‐fuel production. Scarab larvae are characterised by their highly alkaline midgut which is dominated by serine proteinase enzymes, and a modified hindgut which harbors the majority of the intestinal microbiota under anaerobic conditions. Evidence suggests that digestion of recalcitrant organic matter in scarab larvae likely results from a combination of endogenous gut proteinases and cellulolytic enzymes produced by symbiotic micro‐organisms. Most of the easily digestible proteins are mobilized and absorbed in the midgut by endogenous proteinases. The hindgut contents of scarab larvae are characterized by high concentrations of volatile fatty acids, the presence of fermenting bacteria, and typical anaerobic activities, such as methanogenesis. The hindgut typically contains a wide diversity of micro‐organisms, some of which appear to be obligate symbionts with cellulolytic potential. As a result, the scarab larval gut can be regarded as a small bioreactor resembling the rumen of sheep or cattle, where solid food particles composed of cellulose, hemicellulose, pectin and polysaccharides are degraded through enzymatic and fermentation processes. Together these observations suggest scarab larvae have potential to assist the bio‐fuel industry by providing new sources of (hemi)cellulolytic bacteria and bacterial (hemi)cellulolytic enzymes.
Genomic and proteomic analyses of the antennae of the light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae) were undertaken to identify genes and proteins potentially involved in odorant and pheromone binding and turnover. An EST approach yielded 5739 sequences, comprising 808 contigs and 1545 singletons. InterPro and Blast analyses revealed members of families implicated in odorant and pheromone binding (PBPs, GOBPs, ABPXs and CSPs) and turnover (CXEs, GSTs, CYPs). Of the three pheromone binding proteins (PBPs) identified, two were more highly expressed at the RNA and protein levels in adult male antennae (EpPBP1, EpPBP3), while a third was more highly expressed in female antennae (EpPBP2). To identify proteins involved in the detection of sex-specific signals, differential 2D gel electrophoresis (pH 5-8) followed by mass spectrometry was conducted on antennal proteins from males versus females. Identified male-biased proteins included a pheromone binding protein, a porin, a short chain dehydrogenase/reductase, and a member of the takeout family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.