The axon myelin sheath is prone to injury associated with N-methyl-d-aspartate (NMDA)-type glutamate receptor activation but the source of glutamate in this context is unknown. Myelin damage results in permanent action potential loss and severe functional deficit in the white matter of the CNS, for example in ischemic stroke. Here, we show that in rats and mice, ischemic conditions trigger activation of myelinic NMDA receptors incorporating GluN2C/D subunits following release of axonal vesicular glutamate into the peri-axonal space under the myelin sheath. Glial sources of glutamate such as reverse transport did not contribute significantly to this phenomenon. We demonstrate selective myelin uptake and retention of a GluN2C/D NMDA receptor negative allosteric modulator that shields myelin from ischemic injury. The findings potentially support a rational approach toward a low-impact prophylactic therapy to protect patients at risk of stroke and other forms of excitotoxic injury.
Introduction: Saliva represents a less invasive alternative to nasopharyngeal swab (NPS) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. SalivaDirect is a nucleic acid extraction-free method for detecting SARS-CoV2 in saliva specimens. Studies evaluating the concordance of gold standard NPS and newly developed SalivaDirect protocols are limited. The aim of our study was to to assess SalivaDirect as an alternative method for COVID-19 testing. Methods: Matching NPS and saliva samples were analysed from a cohort of symptomatic (n=127) and asymptomatic (n=181) participants recruited from hospital and university settings, respectively. RNA was extracted from NPS while saliva samples were subjected to the SalivaDirect protocol before RT-qPCR analysis. The presence of SARS-Cov-2 was assessed using RdRP and N1 gene targets in NPS and saliva, respectively. Results: Overall we observed 94.3% sensitivity (95% CI 87.2-97.5%), and 95.9% specificity (95% CI 92.4-97.8%) in saliva when compared to matching NPS samples. Analysis of concordance demonstrated 95.5% accuracy overall for the saliva test relative to NPS, and a very high level of agreement (κ coefficient = 0.889, 95% CI 0.833–0.946) between the two sets of specimens. Fourteen of 308 samples were discordant, all from symptomatic patients. Ct values were >30 in 13/14 and >35 in 6/14 samples. No significant difference was found in the Ct values of matching NPS and saliva sample (p=0.860). A highly significant correlation (r = 0.475, p<0.0001) was also found between the Ct values of the concordant positive saliva and NPS specimens. Conclusions: Use of saliva processed according to the SalivaDirect protocol represents a valid method to detect SARS-CoV-2. Accurate and less invasive saliva screening is an attractive alternative to current testing methods based on NPS and would afford greater capacity to test asymptomatic populations especially in the context of frequent testing.
Introduction: Saliva represents a less invasive alternative to nasopharyngeal swab (NPS) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. SalivaDirect is a nucleic acid extraction-free method for detecting SARS-CoV2 in saliva specimens. Studies evaluating the concordance of gold standard NPS and newly developed SalivaDirect protocols are limited. The aim of our study was to assess SalivaDirect as an alternative method for COVID-19 testing. Methods: Matching NPS and saliva samples were analysed from a cohort of symptomatic (n=127) and asymptomatic (n=181) participants recruited from hospital and university settings, respectively. RNA was extracted from NPS while saliva samples were subjected to the SalivaDirect protocol before RT-qPCR analysis. The presence of SARS-Cov-2 was assessed using RdRp and N1 gene targets in NPS and saliva, respectively. Results: Overall we observed 94.3% sensitivity (95% CI 87.2-97.5%), and 95.9% specificity (95% CI 92.4-97.8%) in saliva when compared to matching NPS samples. Analysis of concordance demonstrated 95.5% accuracy overall for the saliva test relative to NPS, and a very high level of agreement (κ coefficient = 0.889, 95% CI 0.833–0.946) between the two sets of specimens. Fourteen of 308 samples were discordant, all from symptomatic patients. Ct values were >30 in 13/14 and >35 in 6/14 samples. No significant difference was found in the Ct values of matching NPS and saliva sample (p=0.860). A highly significant correlation (r = 0.475, p<0.0001) was also found between the Ct values of the concordant positive saliva and NPS specimens. Conclusions: Use of saliva processed according to the SalivaDirect protocol represents a valid method to detect SARS-CoV-2. Accurate and less invasive saliva screening is an attractive alternative to current testing methods based on NPS and would afford greater capacity to test asymptomatic populations especially in the context of frequent testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.