Previous research demonstrates that low-income countries face higher risks than high-income countries from toxic pollution and climate change. However, the relationship between these two risks is little explored or tested, and efforts to address the risks are often independent and uncoordinated. We argue that the global risks from toxic pollution and climate change are highly correlated and should be jointly analyzed in order to inform and better target efforts to reduce or mitigate both risks. We provide such analysis for 176 countries and found a strong (rs = -0.798;95%CI -0.852, -0.727) and significant (p<0.0001) relationship between the distribution of climate risk and toxic pollution. We also found that inequities in pollution production, economic status, and institutional readiness are interconnected and exacerbate risk for countries already in the highest risk categories for both toxic and non-toxic (greenhouse gas) pollution. The findings have policy implications, including the use of the proposed Target assessment to decide where best to address toxic and non-toxic pollution simultaneously, based on the need to minimize human suffering and maximize return on effort.
Introduction People move to maintain relationships, to flee natural disasters, escape violence, fulfill spiritual callings, access resources, and for a host of other reasons. At times, human movement patterns reflect culturally defined values. Landscape archaeologists have embraced this line of inquiry, attempting to track movement patterns in ancestral contexts as a means of illuminating social dynamics. To facilitate movement-oriented analyses, archaeologists are capitalizing on new technologies and developing new methodologies; in particular, least cost analysis (LCA) has become a predominant approach for quantifying, predicting, and modeling pathways of human movement in the past. LCA has been used to analyze a range of topics, including interaction spheres, accessibility, and daily movement (
Extreme weather events, driven by changing climatic conditions, interact with our built environment by distributing—or redistributing—environmental risk and damaging physical infrastructure. We focus on the role of extreme weather events in the distribution of toxic substances within and between residential communities in the largest cities in the United States (US). We explore the impact of projected inland and coastal flooding on the redistribution of toxicity from known contaminated sites, and how patterns of toxic flow change the total population and social demographics of the population at risk from toxic materials. We use the Urban Adaptation Assessment and data on toxic site locations from the US government to evaluate risk of toxin dispersion from flooding in cities and down to the census tract level for the period 2021–2061. We demonstrate that future climate conditions significantly increase the risk of the dispersion of toxins from contaminated sites by 2041.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.