Biofilm formation is a common strategy used by bacteria in order to survive and persist in the environment. In Vibrio cholerae ( V . cholerae ), a Gram-negative pathogen responsible for the cholera disease, biofilm-like aggregates are important for the pathogenesis and disease transmission. Biofilm formation is initiated by the attachment of the bacteria to a surface, followed by maturation stages involving the formation of a biofilm matrix. In V . cholerae , flagella are essential for the initial step of biofilm formation, allowing the bacteria to swim and to detect a surface. In this study, we explored the effect of polymyxin B (PmB), a cationic bacterial antimicrobial peptide, on biofilm formation in pathogenic V . cholerae strains belonging to the O1 and O139 serotypes. We found that sub-inhibitory concentration of PmB induces a reduction of the biofilm formation by V . cholerae O1 and O139. Experiment on preformed biofilm demonstrated that the biofilm formation inhibition occurs at the initial step of biofilm formation, where the flagella are essential. We further characterize the effect of PmB on V . cholerae flagellation. Our results demonstrate that the flagellin expression is not reduced in presence of sub-inhibitory concentration of PmB. However, a decrease of the abundance of flagellin associated with the bacterial cells together with an increase in the secretome was observed. Electron microscopy observations also suggest that the abundance of aflagellated bacteria increases upon PmB supplementation. Finally, in agreement with the effect on the flagellation, a reduction of the bacterial motility is observed. Altogether, our results suggest that the PmB affect V . cholerae flagella resulting in a decrease of the motility and a compromised ability to form biofilm.
Colicins are bacterial toxins produced by some Escherichia coli strains. They exhibit either enzymatic or pore-forming activity towards a very limited number of bacterial species, due to the high specificity of their reception and translocation systems. Yet, we succeeded in making the colicin M homologue from Pectobacterium carotovorum, pectocin M1 (PcaM1), capable of inhibiting E. coli cell growth by bypassing these reception and translocation steps. This goal was achieved through periplasmic expression of this pectocin. Indeed, when appropriately addressed to the periplasm of E. coli, this pectocin could exert its deleterious effects, i.e., the enzymatic degradation of the peptidoglycan lipid II precursor, which resulted in the arrest of the biosynthesis of this essential cell wall polymer, dramatic morphological changes and, ultimately, cell lysis. This result leads to the conclusion that colicin M and its various orthologues constitute powerful antibacterial molecules able to kill any kind of bacterium, once they can reach their lipid II target. They thus have to be seriously considered as promising alternatives to antibiotics.
Vibrio cholerae is a facultative human pathogen responsible for the cholera disease which infects millions of people worldwide each year. V. cholerae is a natural inhabitant of aquatic environments and the infection usually occurs after ingestion of contaminated water or food. The virulence factors of V. cholerae have been extensively studied in the last decades and include the cholera toxin and the coregulated pilus. Most of the virulence factors of V. cholerae belong to the secretome, which corresponds to all the molecules secreted in the extracellular environment such as proteins, exopolysaccharides, extracellular DNA or membrane vesicles. In this chapter, we review the current knowledge of the secretome of V. cholerae and its role in virulence, colonization and resistance. In the first section, we focus on the proteins secreted through conventional secretion systems. The second and third sections emphasize on the membrane vesicles and on the secretome associated with biofilms.
Oxidative stress is caused by the production and excessive accumulation of oxygen reactive species. In bacterial cells, oxidative stress mediated by hydroxyl radicals is typically associated with DNA damage in the cytoplasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.