Over the past 60 years, human intracranial electrophysiology (HIE) has been used to characterize seizures in patients with epilepsy. Secondary to the clinical objectives, electrodes implanted intracranially have been used to investigate mechanisms of human cognition. In addition to studies of memory and language, HIE methods have been used to investigate emotions. The aim of this review is to outline the contribution of HIE (electrocorticography, single-unit recording and electrical brain stimulation) to our understanding of the neural representations of emotions. We identified 64 papers dating back to the mid-1950s which used HIE techniques to study emotional states. Evidence from HIE studies supports the existence of widely distributed networks in the neocortex, limbic/paralimbic regions and subcortical nuclei which contribute to the representation of emotional states. In addition, evidence from HIE supports hemispheric dominance for emotional valence. Furthermore, evidence from HIE supports the existence of overlapping neural areas for emotion perception, experience and expression. Lastly, HIE provides unique insights into the temporal dynamics of neural activation during perception, experience and expression of emotional states. In conclusion, we propose that HIE techniques offer important evidence which must be incorporated into our current models of emotion representation in the human brain.
Patterning polymer electrolyte membrane offers the prospect for enhancing the thermodynamic efficiency for a wide range of electrochemical systems that utilize membrane electrode assemblies (MEAs). In this work, several different polymer electrolyte membrane chemistries (both proton exchange and hydroxide exchange membranes) were patterned via conventional soft lithography using poly(dimethyl siloxane) (PDMS) molds. The patterned membranes displayed excellent pattern fidelity after dropcasting on the PDMS mold. Various structures and feature sizes were generated using the versatile soft lithography approach. This report concludes with preliminary results of patterned membranes for proton exchange and hydroxide exchange membrane fuel cells and proton exchange membrane water electrolysis. These preliminary results convey that mass transfer resistances are more prominent in patterned membranes over nonpatterned membranes.
BackgroundMultiple lines of evidence show that the human amygdala is part of a neural network important for perception of emotion from environmental stimuli, including for processing of intrinsic attractiveness/“goodness” or averseness/“badness,” i.e., affective valence.Objective/HypothesisWith this in mind, we investigated the effect of electrical brain stimulation of the human amygdala on perception of affective valence of images taken from the International Affective Picture Set (IAPS).MethodsUsing intracranial electrodes in patients with epilepsy, we first obtained event-related potentials (ERPs) in eight patients as they viewed IAPS images of varying affective valence. Next, in a further cohort of 10 patients (five female and five male), we measured the effect of 50 Hz electrical stimulation of the left amygdala on perception of affective valence from IAPS images.ResultsWe recorded distinct ERPs from the left amygdala and found significant differences in the responses between positively and negatively valenced stimuli (p = 0.002), and between neutral and negatively valenced stimuli (p = 0.017) 300–500 ms after stimulus onset. Next, we found that amygdala stimulation did not significantly affect how patients perceived valence for neutral images (p = 0.58), whereas stimulation induced patients to report both positively (p = 0.05) and negatively (< 0.01) valenced images as more neutral.ConclusionThese results render further evidence that the left amygdala participates in a neural network for perception of emotion from environmental stimuli. These findings support the idea that electrical stimulation disrupts this network and leads to partial disruption of perception of emotion. Harnessing this effect may have clinical implications in treatment of certain neuropsychiatric disorders using deep brain stimulation (DBS) and neuromodulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.