Shear stress is known to affect many processes in (patho-) physiology through a complex, multi-molecular mechanism, termed mechanotransduction. The sheer complexity of the process has raised questions how mechanotransduction is regulated. Here, we comprehensively evaluate the literature about the role of small non-coding miRNA in the regulation of mechanotransduction. Regulation of mRNA by miRNA is rather complex, depending not only on the concentration of mRNA to miRNA, but also on the amount of mRNA competing for a single mRNA. The only mechanism to counteract the latter factor is through overarching structures of miRNA. Indeed, two overarching structures are present miRNA families and miRNA clusters, and both will be discussed in details, regarding the latest literature and a previous conducted study focussed on mechanotransduction. Both the literature and our own data support a new hypothesis that miRNA-clusters predominantly regulate mechanotransduction, affecting 65% of signalling pathways. In conclusion, a new and important mode of regulation of mechanotransduction is proposed, based on miRNA clusters. This finding implicates new avenues for treatment of mechanotransduction and atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.